https://pandas.pydata.org/docs/reference/general_functions.html
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
# pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, # levels=None, names=None, verify_integrity=False, sort=False, copy=None) # # Concatenate pandas objects along a particular axis. # Combine two Series. s1 = pd.Series(['a', 'b']) s2 = pd.Series(['c', 'd']) s3 = pd.concat([s1, s2], ignore_index=True) # pd.Series(['a', 'b', 'c', 'd']) # 0 a # 1 b # 2 c # 3 d # dtype: object # Combine two DataFrame objects with identical columns. df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number']) df2 = pd.DataFrame([['c', 3], ['d', 4]], columns=['letter', 'number']) df3 = pd.concat([df1, df2], ignore_index=True) # letter number # 0 a 1 # 1 b 2 # 2 c 3 # 3 d 4 # Combine DataFrame objects horizontally along the x axis by passing in axis=1. df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']], columns=['animal', 'name']) df5 = pd.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george
https://pandas.pydata.org/docs/reference/api/pandas.merge.html
# pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, # left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), # copy=None, indicator=False, validate=None) # # Merge DataFrame or named Series objects with a database-style join.