https://numpy.org/doc/stable/reference/arrays.datetime.html
The 'datetime' object represents a single moment in time.
# NumPy uses the name 'datetime64' because 'datetime' is already taken. a = np.datetime64('2005-02-25') # a simple ISO date b = np.datetime64('2005-02-27') # a simple ISO date b - a # np.timedelta64(2,'D') # Date units: (D)ay, (M)onth, (Y)ear, (W)eek. # Time units: (h)our, (m)inute, (s)econd, ms, us, ns, ps, as. np.datetime64('2005-02-25T03:30') # date and time np.arange('2005-02-01', '2005-03-01', dtype='datetime64[D]') array(['2005-02-01', '2005-02-02', '2005-02-03', '2005-02-04', '2005-02-05', '2005-02-06', '2005-02-07', '2005-02-08', '2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12', '2005-02-13', '2005-02-14', '2005-02-15', '2005-02-16', '2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20', '2005-02-21', '2005-02-22', '2005-02-23', '2005-02-24', '2005-02-25', '2005-02-26', '2005-02-27', '2005-02-28'], dtype='datetime64[D]') # all the dates for one month np.arange('2005-01-01', '2005-01-02', dtype="datetime64[h]") array(['2005-01-01T00', '2005-01-01T01', '2005-01-01T02', '2005-01-01T03', '2005-01-01T04', '2005-01-01T05', '2005-01-01T06', '2005-01-01T07', '2005-01-01T08', '2005-01-01T09', '2005-01-01T10', '2005-01-01T11', '2005-01-01T12', '2005-01-01T13', '2005-01-01T14', '2005-01-01T15', '2005-01-01T16', '2005-01-01T17', '2005-01-01T18', '2005-01-01T19', '2005-01-01T20', '2005-01-01T21', '2005-01-01T22', '2005-01-01T23'], dtype='datetime64[h]') # When creating an array of datetimes from a string, it is still possible # to automatically select the unit from the inputs, by using the datetime # type with generic units. np.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64') # array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='datetime64[D]') np.array(['2001-01-01T12:00', '2002-02-03T13:56:03'], dtype='datetime64') # array(['2001-01-01T12:00:00', '2002-02-03T13:56:03'], dtype='datetime64[s]') np.datetime64('2009-01-01') + np.timedelta64(20, 'D') # numpy.datetime64('2009-01-21') np.datetime64('2009') + np.timedelta64(20, 'm') # numpy.datetime64('2009-01-01T00:20') np.datetime64('2020-01-01') + np.timedelta64(3, 'W') # numpy.datetime64('2020-01-22') np.timedelta64(1,'W') / np.timedelta64(1,'D') # 7.0