https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html#itertools-recipes
https://realpython.com/python-itertools/
This module implements functions creating iterators for efficient looping.
The real power of 'itertools' lies in composing the functions to create fast, memory-efficient, and good-looking code.
import itertools # Infinite iterators # itertools.count(start=0, step=1]) itertools.count(10) # yield 10 11 12 13 14 ... itertools.count(10, 5) # yield 10 15 20 25 ... # enumerate(iterable, start=0) emulator without for loop zip(itertools.count(start=0), iterable) # itertools.cycle(iterable) itertools.cycle('ABCD') # yield A B C D A B C D ... itertools.cycle(range(1, 4)) # yield 1 2 3 1 2 3 1 2 3 # itertools.repeat(item [,n]) itertools.repeat(10) # yield 10 10 10 10 ... itertools.repeat(10, 3) # yield 10 10 10 (3 times) list(map(pow, range(10), itertools.repeat(2))) # works for any range (no for loop) #list(map(pow, range(10), iter((lambda: 2), 1))) # the same #list(pow(x, 2) for x in range(10)) # simple # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
# itertools.chain(*iterables) itertools.chain('ABC', 'DEF') # yield A B C D E F # itertools.chain.from_iterable(iterable) # alternate constructor for chain() itertools.chain.from_iterable(['ABC', 'DEF']) # yield A B C D E F
# itertools.islice(iterable, stop) # itertools.islice(iterable, start, stop [, step]) # If 'stop' is None, then iteration continues until the iterator is exhausted, if at all. list(itertools.islice('ABCDEFG', 2)) # ['A', 'B'], stop=2 list(itertools.islice('ABCDEFG', 2, None)) # ['C', 'D', 'E', 'F', 'G'] list(itertools.islice('ABCDEFG', 0, None, 2)) # ['A', 'C', 'E', 'G']
# itertools.zip_longest(*iterables[, fillvalue]) in Py3 # itertools.izip_longest(*iterables[, fillvalue]) in Py2.6+ # It can be used for polynomials. itertools.zip_longest('ABCD', 'xy', fillvalue='-') # yield ('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-') itertools.zip_longest([10, 20], [1, 2, 3, 4], fillvalue=0) # yield (10, 1), (20, 2), (0, 3), (0, 4)
# itertools.product(*iterables, repeat=1) # Cartesian product of input iterables. # product(A, B) returns the same as ((x,y) for x in A for y in B). list(itertools.product("abc", "123")) # [('a', '1'), ('a', '2'), ('a', '3'), # ('b', '1'), ('b', '2'), ('b', '3'), # ('c', '1'), ('c', '2'), ('c', '3')] [x+y for (x,y) in itertools.product("abc","123")] # ['a1', 'a2', 'a3', 'b1', 'b2', 'b3', 'c1', 'c2', 'c3'] [x+y for (x,y) in itertools.product("abc", repeat=2)] # ['aa', 'ab', 'ac', 'ba', 'bb', 'bc', 'ca', 'cb', 'cc']
# Combinatoric generators. # itertools.permutations(p[, r]) # yield r-length tuples, all possible orderings, no repeated elements list(itertools.permutations([1, 2, 3])) # 3! = 6 perms # [(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)] list(itertools.permutations([1, 2, 3], 2)) # [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)] # itertools.combinations(p, r) # yield r-length tuples, in sorted order, no repeated elements list(itertools.combinations([1, 2, 3, 4], 3)) [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)] # itertools.combinations_with_replacement(p, r) # yield r-length tuples, in sorted order, with repeated elements list(itertools.combinations_with_replacement([1, 2, 3, 4], 3)) # [(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), # (1, 2, 4), (1, 3, 3), (1, 3, 4), (1, 4, 4), (2, 2, 2), (2, 2, 3), # (2, 2, 4), (2, 3, 3), (2, 3, 4), (2, 4, 4), (3, 3, 3), (3, 3, 4), # (3, 4, 4), (4, 4, 4)]
# Given a list of values inputs and a positive integer n, # write a function that splits inputs into groups of length n. def naive_grouper(inputs, n): num_groups = len(inputs) // n return [tuple(inputs[i*n:(i+1)*n]) for i in range(num_groups)] # all items from inputs are in the memory! def better_grouper(inputs, n): iters = [iter(inputs)] * n # it is a list of n references to the same iterator return zip(*iters) # zip returns an iterator over tuples def best_grouper(inputs, n, fillvalue=None): iters = [iter(inputs)] * n return itertools.zip_longest(*iters, fillvalue=fillvalue) # it works even if n is not a factor of the length of inputs