https://docs.python.org/3/library/random.html
This module implements pseudo-random number generators for various distributions.
import random # Bookkeeping functions # random.seed(a=None) - initialize the random number generator # random.seed() - the current system time is used # random.getstate() # random.setstate(state)
# Functions for integers # random.randrange(stop) # random.randrange(start, stop[, step]) # Choose a random item from range(start, stop[, step]). # random.randint(a, b) - alias for randrange(a, b+1), b is included random.randint(1, 6) # in games, choose from range(1, 7)
# Functions for sequences # random.choice(sequence) - return a random element from sequence random.choice([0, 1]) # heads or tails, orzeĊ czy reszka, random.randint(0, 1) random.choice(["A", "B", "C", "D"]) # during exams ... random.choice(['win', 'lose', 'draw']) # random.choices(population, weights=None, *, cum_weights=None, k=1) (Py3.6) # Return a k sized list of elements chosen from the population with replacement. random.choices(range(10), k=5) # [2, 7, 5, 8, 5] # Six roulette wheel spins (weighted sampling with replacement) random.choices(['red', 'black', 'green'], [18, 18, 2], k=6) # ['red', 'green', 'black', 'black', 'red', 'black'] # random.sample(population, k) # random.sample(population, k, *, counts=None) (Py3.9) # Return a k length list of unique elements chosen from the population sequence. # Members of the population need not be hashable or unique. random.sample(['red', 'blue'], counts=[4, 2], k=5) random.sample(['red', 'red', 'red', 'red', 'blue', 'blue'], k=5) # the same random.sample(range(10000000), k=60) # fast and space efficient # random.shuffle(sequence) # Shuffle the sequence in place (Fisher-Yates shuffle). # To shuffle an immutable sequence and return a new shuffled list, # use random.sample(L, k=len(L)) instead.
# Real-valued distributions # random.random() - return a random float from [0.0, 1.0) # random.uniform(a, b) - return a random float from [a, b] # random.triangular(low, high, mode) # random.gauss(mu, sigma) - Gaussian distribution