Recursion

https://en.wikipedia.org/wiki/Recursion

INTRODUCTION

A class of objects or methods exhibits recursive behavior when it can be defined by two properties:
(1) a simple base case (or cases) - a terminating scenario that does not use recursion to produce an answer,
(2) a recursive step - a set of rules that reduces all other cases toward the base case.


def print_stars(n):
    if n > 0:   # pass for the base case n=0
        print("*")
        print_stars(n-1)

print_stars(5)

# 0! = 1, 1! = 1, n! = n*(n-1)!

def factorial(n):
    if n == 0 or n == 1:   # base cases
        return 1
    else:
        return n * factorial(n-1)

import math
print(math.factorial(10))   # Python 2.6+
print(factorial(10))

# The Fibonacci sequence
# f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)

def fibonacci(n):
    if n == 0 or n == 1:   # base cases
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

# binomial(n, k) = factorial(n) / (factorial(k) * factorial(n-k))
# binomial(n, 0) = binomial(n, n) = 1

def binomial(n, k):
    if k == 0 or k == n:
        return 1
    else:
        return binomial(n-1, k-1) + binomial(n-1, k)