https://en.wikipedia.org/wiki/Recursion
A class of objects or methods exhibits recursive behavior
when it can be defined by two properties:
(1) a simple base case (or cases) - a terminating scenario
that does not use recursion to produce an answer,
(2) a recursive step - a set of rules that reduces
all other cases toward the base case.
def print_stars(n):
if n > 0: # pass for the base case n=0
print("*")
print_stars(n-1)
print_stars(5)
# 0! = 1, 1! = 1, n! = n*(n-1)!
def factorial(n):
if n == 0 or n == 1: # base cases
return 1
else:
return n * factorial(n-1)
import math
print(math.factorial(10)) # Python 2.6+
print(factorial(10))
# The Fibonacci sequence
# f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)
def fibonacci(n):
if n == 0 or n == 1: # base cases
return n
else:
return fibonacci(n-1) + fibonacci(n-2)
# binomial(n, k) = factorial(n) / (factorial(k) * factorial(n-k))
# binomial(n, 0) = binomial(n, n) = 1
def binomial(n, k):
if k == 0 or k == n:
return 1
else:
return binomial(n-1, k-1) + binomial(n-1, k)