Andrzej Kapanowski

PUBLIKACJE NAUKOWE / SCIENTIFIC PAPERS

  1. M. Fiałkowski, A. Kapanowski, K. Sokalski, Mol. Cryst. Liq. Cryst. 265, 371 (1995).
    Microscopic Approach to Theory of Biaxial Nematic Liquid Crystals.
  2. A. Kapanowski, Phys. Rev. E 55, 7090 (1997).
    Statistical Theory of Elastic Constants of Biaxial Nematic Liquid Crystals.
  3. A. Kapanowski, K. Sokalski, Mol. Cryst. Liq. Cryst. 301, 431 (1997).
    Elastic Constants of Binary Mixtures of Uniaxial Nematic Liquid Crystals.
  4. A. Kapanowski, K. Sokalski, Z. Naturforsch. 53a, 963 (1998).
    Elastic Constants of Binary Liquid Crystalline Mixtures.
  5. A. Kapanowski, Z. Naturforsch. 57a, 105 (2002).
    Statistical Theory of Elastic Constants of Cholesteric Liquid Crystals.
    arXiv:0910.3805 [cond-mat.soft]
    https://arxiv.org/abs/0910.3805
  6. A. Kapanowski, T. Wietecha, Acta Phys. Pol. A 106, 51 (2004).
    Theory of the dielectric susceptibility of liquid crystals with polar nonuniaxial molecules.
    arXiv:1102.0711 [cond-mat.soft]
    https://arxiv.org/abs/1102.0711
  7. A. Kapanowski, T. Wietecha, Phys. Rev. E 71, 021710 (2005).
    Theory of the dielectric susceptibility of nonpolar biaxial liquid crystals.
  8. A. Kapanowski, Mol. Cryst. Liq. Cryst. 436, 1091 (2005).
    Theory of the dielectric susceptibility of polar liquid crystals.
  9. A. Kapanowski, Phys. Rev. E 75, 031709 (2007).
    Statistical theory of the flexoelectric polarization for the uniaxial nematic phase.
  10. A. Kapanowski, Phys. Rev. E 77, 052702 (2008).
    Flexoelectric polarization in the biaxial nematic phase.
    arXiv:0910.2565 [cond-mat.soft]
    https://arxiv.org/abs/0910.2565
  11. A. Kapanowski, Opto-Electron. Rev. 16, 9 (2008).
    Flexoelectric effect modelling.
    arXiv:1102.1862 [cond-mat.soft]
    https://arxiv.org/abs/1102.1862
  12. A. Kapanowski, Mol. Cryst. Liq. Cryst. 540, 50 (2011).
    Straley model of biaxial nematics extended.
  13. A. Kapanowski, The Python Papers 6(2), 4 (2011).
    Python for education: the exact cover problem.
    arXiv:1010.5890 [cs.DS]
    https://arxiv.org/abs/1010.5890
  14. A. Kapanowski, Acta Phys. Pol. A 120, 351 (2011).
    Statistical theory of biaxial nematic and cholesteric phases.
  15. A. Kapanowski, Acta Phys. Pol. A 120, 473 (2011).
    Theory of the dielectric susceptibility of liquid crystals with bent-core molecules.
    arXiv:1102.0719 [cond-mat.soft]
    https://arxiv.org/abs/1102.0719
  16. A. Kapanowski, Acta Phys. Pol. A 122, 146 (2012).
    Flexoelectric effect in biaxial nematics.
    arXiv:1102.1865 [cond-mat.soft]
    https://arxiv.org/abs/1102.1865
  17. A. Kapanowski, M. Abram, Phys. Rev. E 89, 062503 (2014).
    Model of hard spheroplatelets near a hard wall.
    arXiv:1307.0700 [cond-mat.soft]
    https://arxiv.org/abs/1307.0700
  18. A. Kapanowski, The Python Papers 9, 3 (2014).
    Python for education: permutations.
    arXiv:1307.7042 [cs.MS]
    https://arxiv.org/abs/1307.7042
  19. A. Kapanowski, Ł. Gałuszka, The Python Papers 11, 3 (2016).
    Weighted graph algorithms with Python.
    arXiv:1504.07828 [cs.DS]
    https://arxiv.org/abs/1504.07828
  20. A. Kapanowski, A. Krawczyk, arXiv:1903.02904 [cs.DS].
    Halin graphs are 3-vertex-colorable except even wheels.
    https://arxiv.org/abs/1903.02904
  21. G. Ślusarczyk, B. Strug, A. Kapanowski,
    Cooperative Design of an Interactive Museum Guide.
    In: Luo Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2020.
    Lecture Notes in Computer Science, vol 12341, pp 57-66 (2020). Springer, Cham.
    https://doi.org/10.1007/978-3-030-60816-3_7
  22. A. Kapanowski, S. Dawidowicz, Acta Phys. Pol. A 140, 365-371 (2021).
    Monte Carlo simulations of biaxial molecules near a hard wall.
    arXiv:2110.02199 [cond-mat.soft]
    https://arxiv.org/abs/2110.02199

Ostatnie zmiany: 2021-12-06.