This file documents the use of the GNU compilers.

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307 USA

Copyright © 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being “GNU General Public License” and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free Documentation License”.

(a) The FSF's Front-Cover Text is:

A GNU Manual

(b) The FSF's Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development.


Short Contents

Table of Contents


Next: , Up: (DIR)

Introduction

This manual documents how to use the GNU compilers, as well as their features and incompatibilities, and how to report bugs. It corresponds to GCC version 3.3.5. The internals of the GNU compilers, including how to port them to new targets and some information about how to write front ends for new languages, are documented in a separate manual. See Introduction (GNU Compiler Collection (GCC) Internals).


Next: , Previous: Top, Up: Top

1 Compile C, C++, Objective-C, Ada, Fortran, Java, or treelang

Several versions of the compiler (C, C++, Objective-C, Ada, Fortran, Java and treelang) are integrated; this is why we use the name “GNU Compiler Collection”. GCC can compile programs written in any of these languages. The Ada, Fortran, Java and treelang compilers are described in separate manuals.

“GCC” is a common shorthand term for the GNU Compiler Collection. This is both the most general name for the compiler, and the name used when the emphasis is on compiling C programs (as the abbreviation formerly stood for “GNU C Compiler”).

When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is only one compiler, it is also accurate to call it “GCC” no matter what the language context; however, the term “G++” is more useful when the emphasis is on compiling C++ programs.

Similarly, when we talk about Ada compilation, we usually call the compiler “GNAT”, for the same reasons.

We use the name “GCC” to refer to the compilation system as a whole, and more specifically to the language-independent part of the compiler. For example, we refer to the optimization options as affecting the behavior of “GCC” or sometimes just “the compiler”.

Front ends for other languages, such as Mercury and Pascal exist but have not yet been integrated into GCC. These front ends, like that for C++, are built in subdirectories of GCC and link to it. The result is an integrated compiler that can compile programs written in C, C++, Objective-C, or any of the languages for which you have installed front ends.

In this manual, we only discuss the options for the C, Objective-C, and C++ compilers and those of the GCC core. Consult the documentation of the other front ends for the options to use when compiling programs written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your C++ program source. There is no intermediate C version of the program. (By contrast, for example, some other implementations use a program that generates a C program from your C++ source.) Avoiding an intermediate C representation of the program means that you get better object code, and better debugging information. The GNU debugger, GDB, works with this information in the object code to give you comprehensive C++ source-level editing capabilities (see C and C++ (Debugging with GDB)).


Next: , Previous: G++ and GCC, Up: Top

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow one or more versions of that standard, possibly with some exceptions, and possibly with some extensions.

GCC supports three versions of the C standard, although support for the most recent version is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990. This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There were no technical differences between these publications, although the sections of the ANSI standard were renumbered and became clauses in the ISO standard. This standard, in both its forms, is commonly known as C89, or occasionally as C90, from the dates of ratification. The ANSI standard, but not the ISO standard, also came with a Rationale document. To select this standard in GCC, use one of the options -ansi, -std=c89 or -std=iso9899:1990; to obtain all the diagnostics required by the standard, you should also specify -pedantic (or -pedantic-errors if you want them to be errors rather than warnings). See Options Controlling C Dialect.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This amendment is commonly known as AMD1; the amended standard is sometimes known as C94 or C95. To select this standard in GCC, use the option -std=iso9899:199409 (with, as for other standard versions, -pedantic to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and is commonly known as C99. GCC has incomplete support for this standard version; see http://gcc.gnu.org/gcc-3.3/c99status.html for details. To select this standard, use -std=c99 or -std=iso9899:1999. (While in development, drafts of this standard version were referred to as C9X.)

Errors in the 1999 ISO C standard were corrected in a Technical Corrigendum published in 2001. GCC does not support the uncorrected version.

By default, GCC provides some extensions to the C language that on rare occasions conflict with the C standard. See Extensions to the C Language Family. Use of the -std options listed above will disable these extensions where they conflict with the C standard version selected. You may also select an extended version of the C language explicitly with -std=gnu89 (for C89 with GNU extensions) or -std=gnu99 (for C99 with GNU extensions). The default, if no C language dialect options are given, is -std=gnu89; this will change to -std=gnu99 in some future release when the C99 support is complete. Some features that are part of the C99 standard are accepted as extensions in C89 mode.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A conforming hosted implementation supports the whole standard including all the library facilities; a conforming freestanding implementation is only required to provide certain library facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMD1, also those in <iso646.h>; and in C99, also those in <stdbool.h> and <stdint.h>. In addition, complex types, added in C99, are not required for freestanding implementations. The standard also defines two environments for programs, a freestanding environment, required of all implementations and which may not have library facilities beyond those required of freestanding implementations, where the handling of program startup and termination are implementation-defined, and a hosted environment, which is not required, in which all the library facilities are provided and startup is through a function int main (void) or int main (int, char *[]). An OS kernel would be a freestanding environment; a program using the facilities of an operating system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the compiler for a conforming hosted implementation. By default, it will act as the compiler for a hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names of ISO C functions are used, they have the semantics defined in the standard. To make it act as a conforming freestanding implementation for a freestanding environment, use the option -ffreestanding; it will then define __STDC_HOSTED__ to 0 and not make assumptions about the meanings of function names from the standard library, with exceptions noted below. To build an OS kernel, you may well still need to make your own arrangements for linking and startup. See Options Controlling C Dialect.

GCC does not provide the library facilities required only of hosted implementations, nor yet all the facilities required by C99 of freestanding implementations; to use the facilities of a hosted environment, you will need to find them elsewhere (for example, in the GNU C library). See Standard Libraries.

Most of the compiler support routines used by GCC are present in libgcc, but there are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove, memset and memcmp. Some older ports of GCC are configured to use the BSD bcopy, bzero and bcmp functions instead, but this is deprecated for new ports. Finally, if __builtin_trap is used, and the target does not implement the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning the history of C that is available online, see http://gcc.gnu.org/readings.html

There is no formal written standard for Objective-C. The most authoritative manual is “Object-Oriented Programming and the Objective-C Language”, available at a number of web sites

There is no standard for treelang, which is a sample language front end for GCC. Its only purpose is as a sample for people wishing to write a new language for GCC. The language is documented in gcc/treelang/treelang.texi which can be turned into info or HTML format.

See GNAT Reference Manual (GNAT Reference Manual), for information on standard conformance and compatibility of the Ada compiler.

See The GNU Fortran Language (Using and Porting GNU Fortran), for details of the Fortran language supported by GCC.

See Compatibility with the Java Platform (GNU gcj), for details of compatibility between gcj and the Java Platform.


Next: , Previous: Standards, Up: Top

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The “overall options” allow you to stop this process at an intermediate stage. For example, the -c option says not to run the linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other options control the assembler and linker; most of these are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GCC are useful for C programs; when an option is only useful with another language (usually C++), the explanation says so explicitly. If the description for a particular option does not mention a source language, you can use that option with all supported languages.

See Compiling C++ Programs, for a summary of special options for compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-letter names; therefore multiple single-letter options may not be grouped: -dr is very different from -d -r.

You can mix options and other arguments. For the most part, the order you use doesn't matter. Order does matter when you use several options of the same kind; for example, if you specify -L more than once, the directories are searched in the order specified.

Many options have long names starting with -f or with -W—for example, -fforce-mem, -fstrength-reduce, -Wformat and so on. Most of these have both positive and negative forms; the negative form of -ffoo would be -fno-foo. This manual documents only one of these two forms, whichever one is not the default.

See Option Index, for an index to GCC's options.


Next: , Up: Invoking GCC

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options
See Options Controlling the Kind of Output.
          -c  -S  -E  -o file  -pipe  -pass-exit-codes  
          -x language  -v  -###  --help  --target-help  --version
     

C Language Options
See Options Controlling C Dialect.
          -ansi  -std=standard  -aux-info filename 
          -fno-asm  -fno-builtin  -fno-builtin-function 
          -fhosted  -ffreestanding  -fms-extensions 
          -trigraphs  -no-integrated-cpp  -traditional  -traditional-cpp 
          -fallow-single-precision  -fcond-mismatch 
          -fsigned-bitfields  -fsigned-char 
          -funsigned-bitfields  -funsigned-char 
          -fwritable-strings
     

C++ Language Options
See Options Controlling C++ Dialect.
          -fabi-version=n  -fno-access-control  -fcheck-new 
          -fconserve-space  -fno-const-strings  -fdollars-in-identifiers 
          -fno-elide-constructors 
          -fno-enforce-eh-specs  -fexternal-templates 
          -falt-external-templates 
          -ffor-scope  -fno-for-scope  -fno-gnu-keywords 
          -fno-implicit-templates 
          -fno-implicit-inline-templates 
          -fno-implement-inlines  -fms-extensions 
          -fno-nonansi-builtins  -fno-operator-names 
          -fno-optional-diags  -fpermissive 
          -frepo  -fno-rtti  -fstats  -ftemplate-depth-n 
          -fuse-cxa-atexit  -fvtable-gc  -fno-weak  -nostdinc++ 
          -fno-default-inline  -Wabi  -Wctor-dtor-privacy 
          -Wnon-virtual-dtor  -Wreorder 
          -Weffc++  -Wno-deprecated 
          -Wno-non-template-friend  -Wold-style-cast 
          -Woverloaded-virtual  -Wno-pmf-conversions 
          -Wsign-promo  -Wsynth
     

Objective-C Language Options
See Options Controlling Objective-C Dialect.
          -fconstant-string-class=class-name 
          -fgnu-runtime  -fnext-runtime  -gen-decls 
          -Wno-protocol  -Wselector  -Wundeclared-selector
     

Language Independent Options
See Options to Control Diagnostic Messages Formatting.
          -fmessage-length=n 
          -fdiagnostics-show-location=[once|every-line]
     

Warning Options
See Options to Request or Suppress Warnings.
          -fsyntax-only  -pedantic  -pedantic-errors 
          -w  -W  -Wall  -Waggregate-return 
          -Wcast-align  -Wcast-qual  -Wchar-subscripts  -Wcomment 
          -Wconversion  -Wno-deprecated-declarations 
          -Wdisabled-optimization  -Wno-div-by-zero  -Werror 
          -Wfloat-equal  -Wformat  -Wformat=2 
          -Wformat-nonliteral  -Wformat-security 
          -Wimplicit  -Wimplicit-int  
          -Wimplicit-function-declaration 
          -Werror-implicit-function-declaration 
          -Wimport  -Winline  -Wno-endif-labels 
          -Wlarger-than-len  -Wlong-long 
          -Wmain  -Wmissing-braces 
          -Wmissing-format-attribute  -Wmissing-noreturn 
          -Wno-multichar  -Wno-format-extra-args  -Wno-format-y2k 
          -Wno-import  -Wnonnull  -Wpacked  -Wpadded 
          -Wparentheses  -Wpointer-arith  -Wredundant-decls 
          -Wreturn-type  -Wsequence-point  -Wshadow 
          -Wsign-compare  -Wstrict-aliasing 
          -Wswitch  -Wswitch-default  -Wswitch-enum 
          -Wsystem-headers  -Wtrigraphs  -Wundef  -Wuninitialized 
          -Wunknown-pragmas  -Wunreachable-code 
          -Wunused  -Wunused-function  -Wunused-label  -Wunused-parameter 
          -Wunused-value  -Wunused-variable  -Wwrite-strings
     

C-only Warning Options
          -Wbad-function-cast  -Wmissing-declarations 
          -Wmissing-prototypes  -Wnested-externs 
          -Wstrict-prototypes  -Wtraditional
     

Debugging Options
See Options for Debugging Your Program or GCC.
          -dletters  -dumpspecs  -dumpmachine  -dumpversion 
          -fdump-unnumbered  -fdump-translation-unit[-n] 
          -fdump-class-hierarchy[-n] 
          -fdump-tree-original[-n]  
          -fdump-tree-optimized[-n] 
          -fdump-tree-inlined[-n] 
          -feliminate-dwarf2-dups  -fmem-report 
          -fprofile-arcs  -frandom-seed=n 
          -fsched-verbose=n -ftest-coverage  -ftime-report 
          -g  -glevel  -gcoff  -gdwarf  -gdwarf-1  -gdwarf-1+  -gdwarf-2 
          -ggdb  -gstabs  -gstabs+  -gvms  -gxcoff  -gxcoff+ 
          -p  -pg  -print-file-name=library  -print-libgcc-file-name 
          -print-multi-directory  -print-multi-lib 
          -print-prog-name=program  -print-search-dirs  -Q 
          -save-temps  -time
     

Optimization Options
See Options that Control Optimization.
          -falign-functions=n  -falign-jumps=n 
          -falign-labels=n  -falign-loops=n  
          -fbranch-probabilities  -fcaller-saves  -fcprop-registers 
          -fcse-follow-jumps  -fcse-skip-blocks  -fdata-sections 
          -fdelayed-branch  -fdelete-null-pointer-checks 
          -fexpensive-optimizations  -ffast-math  -ffloat-store 
          -fforce-addr  -fforce-mem  -ffunction-sections 
          -fgcse  -fgcse-lm  -fgcse-sm  -floop-optimize  -fcrossjumping 
          -fif-conversion  -fif-conversion2 
          -finline-functions  -finline-limit=n  -fkeep-inline-functions 
          -fkeep-static-consts  -fmerge-constants  -fmerge-all-constants 
          -fmove-all-movables  -fnew-ra  -fno-branch-count-reg 
          -fno-default-inline  -fno-defer-pop 
          -fno-function-cse  -fno-guess-branch-probability 
          -fno-inline  -fno-math-errno  -fno-peephole  -fno-peephole2 
          -funsafe-math-optimizations  -ffinite-math-only 
          -fno-trapping-math  -fno-zero-initialized-in-bss 
          -fomit-frame-pointer  -foptimize-register-move 
          -foptimize-sibling-calls  -fprefetch-loop-arrays 
          -freduce-all-givs  -fregmove  -frename-registers 
          -freorder-blocks  -freorder-functions 
          -frerun-cse-after-loop  -frerun-loop-opt 
          -fschedule-insns  -fschedule-insns2 
          -fno-sched-interblock  -fno-sched-spec  -fsched-spec-load 
          -fsched-spec-load-dangerous  -fsignaling-nans 
          -fsingle-precision-constant  -fssa  -fssa-ccp  -fssa-dce 
          -fstrength-reduce  -fstrict-aliasing  -ftracer  -fthread-jumps 
          -funroll-all-loops  -funroll-loops  
          --param name=value 
          -O  -O0  -O1  -O2  -O3  -Os
     

Preprocessor Options
See Options Controlling the Preprocessor.
          -$  -Aquestion=answer 
          -A-question[=answer] 
          -C  -dD  -dI  -dM  -dN 
          -Dmacro[=defn]  -E  -H 
          -idirafter dir 
          -include file  -imacros file 
          -iprefix file  -iwithprefix dir 
          -iwithprefixbefore dir  -isystem dir 
          -M  -MM  -MF  -MG  -MP  -MQ  -MT  -nostdinc  -P  -remap 
          -trigraphs  -undef  -Umacro  -Wp,option
     

Assembler Option
See Passing Options to the Assembler.
          -Wa,option
     

Linker Options
See Options for Linking.
          object-file-name  -llibrary 
          -nostartfiles  -nodefaultlibs  -nostdlib 
          -s  -static  -static-libgcc  -shared  -shared-libgcc  -symbolic 
          -Wl,option  -Xlinker option 
          -u symbol
     

Directory Options
See Options for Directory Search.
          -Bprefix  -Idir  -I-  -Ldir  -specs=file
     

Target Options
See Target Options.
          -V version  -b machine
     

Machine Dependent Options
See Hardware Models and Configurations.

M680x0 Options

          -m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 
          -m68060  -mcpu32  -m5200  -m68881  -mbitfield  -mc68000  -mc68020   
          -mfpa  -mnobitfield  -mrtd  -mshort  -msoft-float  -mpcrel 
          -malign-int  -mstrict-align
     

M68hc1x Options

          -m6811  -m6812  -m68hc11  -m68hc12  -m68hcs12 
          -mauto-incdec  -minmax  -mlong-calls  -mshort 
          -msoft-reg-count=count
     

VAX Options

          -mg  -mgnu  -munix
     

SPARC Options

          -mcpu=cpu-type 
          -mtune=cpu-type 
          -mcmodel=code-model 
          -m32  -m64 
          -mapp-regs  -mbroken-saverestore  -mcypress 
          -mfaster-structs  -mflat 
          -mfpu  -mhard-float  -mhard-quad-float 
          -mimpure-text  -mlittle-endian  -mlive-g0  -mno-app-regs 
          -mno-faster-structs  -mno-flat  -mno-fpu 
          -mno-impure-text  -mno-stack-bias  -mno-unaligned-doubles 
          -msoft-float  -msoft-quad-float  -msparclite  -mstack-bias 
          -msupersparc  -munaligned-doubles  -mv8
          -threads -pthreads
     

ARM Options

          -mapcs-frame  -mno-apcs-frame 
          -mapcs-26  -mapcs-32 
          -mapcs-stack-check  -mno-apcs-stack-check 
          -mapcs-float  -mno-apcs-float 
          -mapcs-reentrant  -mno-apcs-reentrant 
          -msched-prolog  -mno-sched-prolog 
          -mlittle-endian  -mbig-endian  -mwords-little-endian 
          -malignment-traps  -mno-alignment-traps 
          -msoft-float  -mhard-float  -mfpe 
          -mthumb-interwork  -mno-thumb-interwork 
          -mcpu=name  -march=name  -mfpe=name  
          -mstructure-size-boundary=n 
          -mabort-on-noreturn 
          -mlong-calls  -mno-long-calls 
          -msingle-pic-base  -mno-single-pic-base 
          -mpic-register=reg 
          -mnop-fun-dllimport 
          -mpoke-function-name 
          -mthumb  -marm 
          -mtpcs-frame  -mtpcs-leaf-frame 
          -mcaller-super-interworking  -mcallee-super-interworking
     

MN10200 Options

          -mrelax
     

MN10300 Options

          -mmult-bug  -mno-mult-bug 
          -mam33  -mno-am33 
          -mno-crt0  -mrelax
     

M32R/D Options

          -m32rx  -m32r  -mcode-model=model-type 
          -msdata=sdata-type  -G num
     

M88K Options

          -m88000  -m88100  -m88110  -mbig-pic 
          -mcheck-zero-division  -mhandle-large-shift 
          -midentify-revision  -mno-check-zero-division 
          -mno-ocs-debug-info  -mno-ocs-frame-position 
          -mno-optimize-arg-area  -mno-serialize-volatile 
          -mno-underscores  -mocs-debug-info 
          -mocs-frame-position  -moptimize-arg-area 
          -mserialize-volatile  -mshort-data-num  -msvr3 
          -msvr4  -mtrap-large-shift  -muse-div-instruction 
          -mversion-03.00  -mwarn-passed-structs
     

RS/6000 and PowerPC Options

          -mcpu=cpu-type 
          -mtune=cpu-type 
          -mpower  -mno-power  -mpower2  -mno-power2 
          -mpowerpc  -mpowerpc64  -mno-powerpc 
          -maltivec  -mno-altivec 
          -mpowerpc-gpopt  -mno-powerpc-gpopt 
          -mpowerpc-gfxopt  -mno-powerpc-gfxopt 
          -mnew-mnemonics  -mold-mnemonics 
          -mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc 
          -m64  -m32  -mxl-call  -mno-xl-call  -mpe 
          -msoft-float  -mhard-float  -mmultiple  -mno-multiple 
          -mstring  -mno-string  -mupdate  -mno-update 
          -mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align 
          -mstrict-align  -mno-strict-align  -mrelocatable 
          -mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib 
          -mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian 
          -mcall-aix  -mcall-sysv  -mcall-netbsd 
          -maix-struct-return  -msvr4-struct-return 
          -mabi=altivec  -mabi=no-altivec 
          -mabi=spe  -mabi=no-spe 
          -misel=yes  -misel=no 
          -mprototype  -mno-prototype 
          -msim  -mmvme  -mads  -myellowknife  -memb  -msdata 
          -msdata=opt  -mvxworks  -mwindiss  -G num  -pthread
     

Darwin Options

          -all_load -allowable_client -arch -arch_errors_fatal 
          -arch_only -bind_at_load -bundle -bundle_loader 
          -client_name -compatibility_version -current_version 
          -dependency-file -dylib_file -dylinker_install_name 
          -dynamic -dynamiclib -exported_symbols_list 
          -filelist -flat_namespace -force_cpusubtype_ALL 
          -force_flat_namespace -headerpad_max_install_names 
          -image_base -init -install_name -keep_private_externs 
          -multi_module -multiply_defined -multiply_defined_unused 
          -noall_load -nomultidefs -noprebind -noseglinkedit 
          -pagezero_size -prebind -prebind_all_twolevel_modules 
          -private_bundle -read_only_relocs -sectalign 
          -sectobjectsymbols -whyload -seg1addr 
          -sectcreate -sectobjectsymbols -sectorder 
          -seg_addr_table -seg_addr_table_filename -seglinkedit 
          -segprot -segs_read_only_addr -segs_read_write_addr 
          -single_module -static -sub_library -sub_umbrella 
          -twolevel_namespace -umbrella -undefined 
          -unexported_symbols_list -weak_reference_mismatches -whatsloaded
     

RT Options

          -mcall-lib-mul  -mfp-arg-in-fpregs  -mfp-arg-in-gregs 
          -mfull-fp-blocks  -mhc-struct-return  -min-line-mul 
          -mminimum-fp-blocks  -mnohc-struct-return
     

MIPS Options

          -mabicalls  -march=cpu-type  -mtune=cpu=type 
          -mcpu=cpu-type  -membedded-data  -muninit-const-in-rodata 
          -membedded-pic  -mfp32  -mfp64  -mfused-madd  -mno-fused-madd 
          -mgas  -mgp32  -mgp64 
          -mgpopt  -mhalf-pic  -mhard-float  -mint64  -mips1 
          -mips2  -mips3  -mips4  -mlong64  -mlong32  -mlong-calls  -mmemcpy 
          -mmips-as  -mmips-tfile  -mno-abicalls 
          -mno-embedded-data  -mno-uninit-const-in-rodata 
          -mno-embedded-pic  -mno-gpopt  -mno-long-calls 
          -mno-memcpy  -mno-mips-tfile  -mno-rnames  -mno-stats 
          -mrnames  -msoft-float 
          -m4650  -msingle-float  -mmad 
          -mstats  -EL  -EB  -G num  -nocpp 
          -mabi=32  -mabi=n32  -mabi=64  -mabi=eabi 
          -mfix7000  -mno-crt0  -mflush-func=func  -mno-flush-func 
          -mbranch-likely  -mno-branch-likely
     

i386 and x86-64 Options

          -mcpu=cpu-type  -march=cpu-type  
          -mfpmath=unit  -masm=dialect  -mno-fancy-math-387 
          -mno-fp-ret-in-387  -msoft-float  -msvr3-shlib 
          -mno-wide-multiply  -mrtd  -malign-double 
          -mpreferred-stack-boundary=num 
          -mmmx  -msse  -msse2 -msse3 -m3dnow 
          -mthreads  -mno-align-stringops  -minline-all-stringops 
          -mpush-args  -maccumulate-outgoing-args  -m128bit-long-double 
          -m96bit-long-double  -mregparm=num  -momit-leaf-frame-pointer 
          -mno-red-zone
          -mcmodel=code-model 
          -m32  -m64
     

HPPA Options

          -march=architecture-type 
          -mbig-switch  -mdisable-fpregs  -mdisable-indexing 
          -mfast-indirect-calls  -mgas  -mgnu-ld  -mhp-ld 
          -mjump-in-delay  -mlinker-opt  -mlong-calls 
          -mlong-load-store  -mno-big-switch  -mno-disable-fpregs 
          -mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas 
          -mno-jump-in-delay  -mno-long-load-store 
          -mno-portable-runtime  -mno-soft-float 
          -mno-space-regs  -msoft-float  -mpa-risc-1-0 
          -mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime 
          -mschedule=cpu-type  -mspace-regs  -msio  -mwsio 
          -nolibdld  -static  -threads
     

Intel 960 Options

          -mcpu-type  -masm-compat  -mclean-linkage 
          -mcode-align  -mcomplex-addr  -mleaf-procedures 
          -mic-compat  -mic2.0-compat  -mic3.0-compat 
          -mintel-asm  -mno-clean-linkage  -mno-code-align 
          -mno-complex-addr  -mno-leaf-procedures 
          -mno-old-align  -mno-strict-align  -mno-tail-call 
          -mnumerics  -mold-align  -msoft-float  -mstrict-align 
          -mtail-call
     

DEC Alpha Options

          -mno-fp-regs  -msoft-float  -malpha-as  -mgas 
          -mieee  -mieee-with-inexact  -mieee-conformant 
          -mfp-trap-mode=mode  -mfp-rounding-mode=mode 
          -mtrap-precision=mode  -mbuild-constants 
          -mcpu=cpu-type  -mtune=cpu-type 
          -mbwx  -mmax  -mfix  -mcix 
          -mfloat-vax  -mfloat-ieee 
          -mexplicit-relocs  -msmall-data  -mlarge-data 
          -mmemory-latency=time
     

DEC Alpha/VMS Options

          -mvms-return-codes
     

H8/300 Options

          -mrelax  -mh  -ms  -mn  -mint32  -malign-300
     

SH Options

          -m1  -m2  -m3  -m3e 
          -m4-nofpu  -m4-single-only  -m4-single  -m4 
          -m5-64media  -m5-64media-nofpu 
          -m5-32media  -m5-32media-nofpu 
          -m5-compact  -m5-compact-nofpu 
          -mb  -ml  -mdalign  -mrelax 
          -mbigtable  -mfmovd  -mhitachi  -mnomacsave 
          -mieee  -misize  -mpadstruct  -mspace 
          -mprefergot  -musermode
     

System V Options

          -Qy  -Qn  -YP,paths  -Ym,dir
     

ARC Options

          -EB  -EL 
          -mmangle-cpu  -mcpu=cpu  -mtext=text-section 
          -mdata=data-section  -mrodata=readonly-data-section
     

TMS320C3x/C4x Options

          -mcpu=cpu  -mbig  -msmall  -mregparm  -mmemparm 
          -mfast-fix  -mmpyi  -mbk  -mti  -mdp-isr-reload 
          -mrpts=count  -mrptb  -mdb  -mloop-unsigned 
          -mparallel-insns  -mparallel-mpy  -mpreserve-float
     

V850 Options

          -mlong-calls  -mno-long-calls  -mep  -mno-ep 
          -mprolog-function  -mno-prolog-function  -mspace 
          -mtda=n  -msda=n  -mzda=n 
          -mapp-regs  -mno-app-regs 
          -mdisable-callt  -mno-disable-callt 
          -mv850e 
          -mv850  -mbig-switch
     

NS32K Options

          -m32032  -m32332  -m32532  -m32081  -m32381 
          -mmult-add  -mnomult-add  -msoft-float  -mrtd  -mnortd 
          -mregparam  -mnoregparam  -msb  -mnosb 
          -mbitfield  -mnobitfield  -mhimem  -mnohimem
     

AVR Options

          -mmcu=mcu  -msize  -minit-stack=n  -mno-interrupts 
          -mcall-prologues  -mno-tablejump  -mtiny-stack
     

MCore Options

          -mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates 
          -mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields 
          -m4byte-functions  -mno-4byte-functions  -mcallgraph-data 
          -mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim 
          -mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment
     

MMIX Options

          -mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu 
          -mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols 
          -melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses 
          -mno-base-addresses  -msingle-exit  -mno-single-exit
     

IA-64 Options

          -mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic 
          -mvolatile-asm-stop  -mb-step  -mregister-names  -mno-sdata 
          -mconstant-gp  -mauto-pic  -minline-float-divide-min-latency 
          -minline-float-divide-max-throughput 
          -minline-int-divide-min-latency 
          -minline-int-divide-max-throughput  -mno-dwarf2-asm 
          -mfixed-range=register-range
     

D30V Options

          -mextmem  -mextmemory  -monchip  -mno-asm-optimize 
          -masm-optimize  -mbranch-cost=n  -mcond-exec=n
     

S/390 and zSeries Options

          -mhard-float  -msoft-float  -mbackchain  -mno-backchain 
          -msmall-exec  -mno-small-exec  -mmvcle  -mno-mvcle 
          -m64  -m31  -mdebug  -mno-debug
     

CRIS Options

          -mcpu=cpu  -march=cpu  -mtune=cpu 
          -mmax-stack-frame=n  -melinux-stacksize=n 
          -metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects 
          -mstack-align  -mdata-align  -mconst-align 
          -m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue  -mno-gotplt 
          -melf  -maout  -melinux  -mlinux  -sim  -sim2 
          -mmul-bug-workaround  -mno-mul-bug-workaround
     

PDP-11 Options

          -mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 
          -mbcopy  -mbcopy-builtin  -mint32  -mno-int16 
          -mint16  -mno-int32  -mfloat32  -mno-float64 
          -mfloat64  -mno-float32  -mabshi  -mno-abshi 
          -mbranch-expensive  -mbranch-cheap 
          -msplit  -mno-split  -munix-asm  -mdec-asm
     

Xstormy16 Options

          -msim
     

Xtensa Options

          -mbig-endian  -mlittle-endian 
          -mdensity  -mno-density 
          -mmac16  -mno-mac16 
          -mmul16  -mno-mul16 
          -mmul32  -mno-mul32 
          -mnsa  -mno-nsa 
          -mminmax  -mno-minmax 
          -msext  -mno-sext 
          -mbooleans  -mno-booleans 
          -mhard-float  -msoft-float 
          -mfused-madd  -mno-fused-madd 
          -mserialize-volatile  -mno-serialize-volatile 
          -mtext-section-literals  -mno-text-section-literals 
          -mtarget-align  -mno-target-align 
          -mlongcalls  -mno-longcalls
     

FRV Options

          -mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 
          -mhard-float  -msoft-float  -malloc-cc  -mfixed-cc 
          -mdword  -mno-dword  -mdouble  -mno-double 
          -mmedia  -mno-media  -mmuladd  -mno-muladd  -mlibrary-pic 
          -macc-4  -macc-8  -mpack  -mno-pack  -mno-eflags 
          -mcond-move  -mno-cond-move -mscc  -mno-scc  
          -mcond-exec  -mno-cond-exec  -mvliw-branch  -mno-vliw-branch 
          -mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec 
          -mno-nested-cond-exec  -mtomcat-stats 
          -mcpu=cpu
     

Code Generation Options
See Options for Code Generation Conventions.
          -fcall-saved-reg  -fcall-used-reg 
          -ffixed-reg  -fexceptions 
          -fnon-call-exceptions  -funwind-tables 
          -fasynchronous-unwind-tables 
          -finhibit-size-directive  -finstrument-functions 
          -fno-common  -fno-ident  -fno-gnu-linker 
          -fpcc-struct-return  -fpic  -fPIC 
          -freg-struct-return  -fshared-data  -fshort-enums 
          -fshort-double  -fshort-wchar  -fvolatile 
          -fvolatile-global  -fvolatile-static 
          -fverbose-asm  -fpack-struct  -fstack-check 
          -fstack-limit-register=reg  -fstack-limit-symbol=sym 
          -fargument-alias  -fargument-noalias 
          -fargument-noalias-global  -fleading-underscore 
          -ftls-model=model 
          -ftrapv  -fbounds-check
     


Next: , Previous: Option Summary, Up: Invoking GCC

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. The first three stages apply to an individual source file, and end by producing an object file; linking combines all the object files (those newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c
C source code which must be preprocessed.
file.i
C source code which should not be preprocessed.
file.ii
C++ source code which should not be preprocessed.
file.m
Objective-C source code. Note that you must link with the library libobjc.a to make an Objective-C program work.
file.mi
Objective-C source code which should not be preprocessed.
file.h
C header file (not to be compiled or linked).
file.cc
file.cp
file.cxx
file.cpp
file.c++
file.C
C++ source code which must be preprocessed. Note that in .cxx, the last two letters must both be literally x. Likewise, .C refers to a literal capital C.
file.f
file.for
file.FOR
Fortran source code which should not be preprocessed.
file.F
file.fpp
file.FPP
Fortran source code which must be preprocessed (with the traditional preprocessor).
file.r
Fortran source code which must be preprocessed with a RATFOR preprocessor (not included with GCC).

See Options Controlling the Kind of Output (Using and Porting GNU Fortran), for more details of the handling of Fortran input files.

file.ads
Ada source code file which contains a library unit declaration (a declaration of a package, subprogram, or generic, or a generic instantiation), or a library unit renaming declaration (a package, generic, or subprogram renaming declaration). Such files are also called specs.
file.adb
Ada source code file containing a library unit body (a subprogram or package body). Such files are also called bodies.
file.s
Assembler code.
file.S
Assembler code which must be preprocessed.
other
An object file to be fed straight into linking. Any file name with no recognized suffix is treated this way.

You can specify the input language explicitly with the -x option:

-x language
Specify explicitly the language for the following input files (rather than letting the compiler choose a default based on the file name suffix). This option applies to all following input files until the next -x option. Possible values for language are:
          c  c-header  cpp-output
          c++  c++-cpp-output
          objective-c  objc-cpp-output
          assembler  assembler-with-cpp
          ada
          f77  f77-cpp-input  ratfor
          java
          treelang
     

-x none
Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if -x has not been used at all).
-pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the compiler returns a non-success return code. If you specify -pass-exit-codes, the gcc program will instead return with numerically highest error produced by any phase that returned an error indication.

If you only want some of the stages of compilation, you can use -x (or filename suffixes) to tell gcc where to start, and one of the options -c, -S, or -E to say where gcc is to stop. Note that some combinations (for example, -x cpp-output -E) instruct gcc to do nothing at all.

-c
Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix .c, .i, .s, etc., with .o.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S
Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the suffix .c, .i, etc., with .s.

Input files that don't require compilation are ignored.

-E
Stop after the preprocessing stage; do not run the compiler proper. The output is in the form of preprocessed source code, which is sent to the standard output.

Input files which don't require preprocessing are ignored.


-o file
Place output in file file. This applies regardless to whatever sort of output is being produced, whether it be an executable file, an object file, an assembler file or preprocessed C code.

Since only one output file can be specified, it does not make sense to use -o when compiling more than one input file, unless you are producing an executable file as output.

If -o is not specified, the default is to put an executable file in a.out, the object file for source.suffix in source.o, its assembler file in source.s, and all preprocessed C source on standard output.

-v
Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the compiler driver program and of the preprocessor and the compiler proper.
-###
Like -v except the commands are not executed and all command arguments are quoted. This is useful for shell scripts to capture the driver-generated command lines.
-pipe
Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble.
--help
Print (on the standard output) a description of the command line options understood by gcc. If the -v option is also specified then --help will also be passed on to the various processes invoked by gcc, so that they can display the command line options they accept. If the -W option is also specified then command line options which have no documentation associated with them will also be displayed.
--target-help
Print (on the standard output) a description of target specific command line options for each tool.
--version
Display the version number and copyrights of the invoked GCC.


Next: , Previous: Overall Options, Up: Invoking GCC

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes .C, .cc, .cpp, .c++, .cp, or .cxx; preprocessed C++ files use the suffix .ii. GCC recognizes files with these names and compiles them as C++ programs even if you call the compiler the same way as for compiling C programs (usually with the name gcc).

However, C++ programs often require class libraries as well as a compiler that understands the C++ language—and under some circumstances, you might want to compile programs from standard input, or otherwise without a suffix that flags them as C++ programs. g++ is a program that calls GCC with the default language set to C++, and automatically specifies linking against the C++ library. On many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line options that you use for compiling programs in any language; or command-line options meaningful for C and related languages; or options that are meaningful only for C++ programs. See Options Controlling C Dialect, for explanations of options for languages related to C. See Options Controlling C++ Dialect, for explanations of options that are meaningful only for C++ programs.


Next: , Previous: Invoking G++, Up: Invoking GCC

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++ and Objective-C) that the compiler accepts:

-ansi
In C mode, support all ISO C90 programs. In C++ mode, remove GNU extensions that conflict with ISO C++.

This turns off certain features of GCC that are incompatible with ISO C90 (when compiling C code), or of standard C++ (when compiling C++ code), such as the asm and typeof keywords, and predefined macros such as unix and vax that identify the type of system you are using. It also enables the undesirable and rarely used ISO trigraph feature. For the C compiler, it disables recognition of C++ style // comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ continue to work despite -ansi. You would not want to use them in an ISO C program, of course, but it is useful to put them in header files that might be included in compilations done with -ansi. Alternate predefined macros such as __unix__ and __vax__ are also available, with or without -ansi.

The -ansi option does not cause non-ISO programs to be rejected gratuitously. For that, -pedantic is required in addition to -ansi. See Warning Options.

The macro __STRICT_ANSI__ is predefined when the -ansi option is used. Some header files may notice this macro and refrain from declaring certain functions or defining certain macros that the ISO standard doesn't call for; this is to avoid interfering with any programs that might use these names for other things.

Functions which would normally be built in but do not have semantics defined by ISO C (such as alloca and ffs) are not built-in functions with -ansi is used. See Other built-in functions provided by GCC, for details of the functions affected.

-std=
Determine the language standard. This option is currently only supported when compiling C or C++. A value for this option must be provided; possible values are
c89
iso9899:1990
ISO C90 (same as -ansi).
iso9899:199409
ISO C90 as modified in amendment 1.
c99
c9x
iso9899:1999
iso9899:199x
ISO C99. Note that this standard is not yet fully supported; see http://gcc.gnu.org/gcc-3.3/c99status.html for more information. The names c9x and iso9899:199x are deprecated.
gnu89
Default, ISO C90 plus GNU extensions (including some C99 features).
gnu99
gnu9x
ISO C99 plus GNU extensions. When ISO C99 is fully implemented in GCC, this will become the default. The name gnu9x is deprecated.
c++98
The 1998 ISO C++ standard plus amendments.
gnu++98
The same as -std=c++98 plus GNU extensions. This is the default for C++ code.

Even when this option is not specified, you can still use some of the features of newer standards in so far as they do not conflict with previous C standards. For example, you may use __restrict__ even when -std=c99 is not specified.

The -std options specifying some version of ISO C have the same effects as -ansi, except that features that were not in ISO C90 but are in the specified version (for example, // comments and the inline keyword in ISO C99) are not disabled.

See Language Standards Supported by GCC, for details of these standard versions.

-aux-info filename
Output to the given filename prototyped declarations for all functions declared and/or defined in a translation unit, including those in header files. This option is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declaration (source file and line), whether the declaration was implicit, prototyped or unprototyped (I, N for new or O for old, respectively, in the first character after the line number and the colon), and whether it came from a declaration or a definition (C or F, respectively, in the following character). In the case of function definitions, a K&R-style list of arguments followed by their declarations is also provided, inside comments, after the declaration.

-fno-asm
Do not recognize asm, inline or typeof as a keyword, so that code can use these words as identifiers. You can use the keywords __asm__, __inline__ and __typeof__ instead. -ansi implies -fno-asm.

In C++, this switch only affects the typeof keyword, since asm and inline are standard keywords. You may want to use the -fno-gnu-keywords flag instead, which has the same effect. In C99 mode (-std=c99 or -std=gnu99), this switch only affects the asm and typeof keywords, since inline is a standard keyword in ISO C99.

-fno-builtin
-fno-builtin-function
Don't recognize built-in functions that do not begin with __builtin_ as prefix. See Other built-in functions provided by GCC, for details of the functions affected, including those which are not built-in functions when -ansi or -std options for strict ISO C conformance are used because they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more efficiently; for instance, calls to alloca may become single instructions that adjust the stack directly, and calls to memcpy may become inline copy loops. The resulting code is often both smaller and faster, but since the function calls no longer appear as such, you cannot set a breakpoint on those calls, nor can you change the behavior of the functions by linking with a different library.

With the -fno-builtin-function option only the built-in function function is disabled. function must not begin with __builtin_. If a function is named this is not built-in in this version of GCC, this option is ignored. There is no corresponding -fbuiltin-function option; if you wish to enable built-in functions selectively when using -fno-builtin or -ffreestanding, you may define macros such as:

          #define abs(n)          __builtin_abs ((n))
          #define strcpy(d, s)    __builtin_strcpy ((d), (s))
     

-fhosted
Assert that compilation takes place in a hosted environment. This implies -fbuiltin. A hosted environment is one in which the entire standard library is available, and in which main has a return type of int. Examples are nearly everything except a kernel. This is equivalent to -fno-freestanding.
-ffreestanding
Assert that compilation takes place in a freestanding environment. This implies -fno-builtin. A freestanding environment is one in which the standard library may not exist, and program startup may not necessarily be at main. The most obvious example is an OS kernel. This is equivalent to -fno-hosted.

See Language Standards Supported by GCC, for details of freestanding and hosted environments.

-fms-extensions
Accept some non-standard constructs used in Microsoft header files.
-trigraphs
Support ISO C trigraphs. The -ansi option (and -std options for strict ISO C conformance) implies -trigraphs.
-no-integrated-cpp
Performs a compilation in two passes: preprocessing and compiling. This option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the -B option. The user supplied compilation step can then add in an additional preprocessing step after normal preprocessing but before compiling. The default is to use the integrated cpp (internal cpp)

The semantics of this option will change if "cc1", "cc1plus", and "cc1obj" are merged.


-traditional
-traditional-cpp
Formerly, these options caused GCC to attempt to emulate a pre-standard C compiler. They are now only supported with the -E switch. The preprocessor continues to support a pre-standard mode. See the GNU CPP manual for details.
-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void. This option is not supported for C++.
-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when it depends on the signedness of an object. But many programs have been written to use plain char and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to -fno-unsigned-char, which is the negative form of -funsigned-char. Likewise, the option -fno-signed-char is equivalent to -funsigned-char.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the declaration does not use either signed or unsigned. By default, such a bit-field is signed, because this is consistent: the basic integer types such as int are signed types.
-fwritable-strings
Store string constants in the writable data segment and don't uniquize them. This is for compatibility with old programs which assume they can write into string constants.

Writing into string constants is a very bad idea; “constants” should be constant.


Next: , Previous: C Dialect Options, Up: Invoking GCC

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs; but you can also use most of the GNU compiler options regardless of what language your program is in. For example, you might compile a file firstClass.C like this:

     g++ -g -frepo -O -c firstClass.C

In this example, only -frepo is an option meant only for C++ programs; you can use the other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. Version 1 is the version of the C++ ABI that first appeared in G++ 3.2. Version 0 will always be the version that conforms most closely to the C++ ABI specification. Therefore, the ABI obtained using version 0 will change as ABI bugs are fixed.

The default is version 1.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around bugs in the access control code.
-fcheck-new
Check that the pointer returned by operator new is non-null before attempting to modify the storage allocated. This check is normally unnecessary because the C++ standard specifies that operator new will only return 0 if it is declared throw(), in which case the compiler will always check the return value even without this option. In all other cases, when operator new has a non-empty exception specification, memory exhaustion is signalled by throwing std::bad_alloc. See also new (nothrow).
-fconserve-space
Put uninitialized or runtime-initialized global variables into the common segment, as C does. This saves space in the executable at the cost of not diagnosing duplicate definitions. If you compile with this flag and your program mysteriously crashes after main() has completed, you may have an object that is being destroyed twice because two definitions were merged.

This option is no longer useful on most targets, now that support has been added for putting variables into BSS without making them common.

-fno-const-strings
Give string constants type char * instead of type const char *. By default, G++ uses type const char * as required by the standard. Even if you use -fno-const-strings, you cannot actually modify the value of a string constant, unless you also use -fwritable-strings.

This option might be removed in a future release of G++. For maximum portability, you should structure your code so that it works with string constants that have type const char *.

-fdollars-in-identifiers
Accept $ in identifiers. You can also explicitly prohibit use of $ with the option -fno-dollars-in-identifiers. (GNU C allows $ by default on most target systems, but there are a few exceptions.) Traditional C allowed the character $ to form part of identifiers. However, ISO C and C++ forbid $ in identifiers.
-fno-elide-constructors
The C++ standard allows an implementation to omit creating a temporary which is only used to initialize another object of the same type. Specifying this option disables that optimization, and forces G++ to call the copy constructor in all cases.
-fno-enforce-eh-specs
Don't check for violation of exception specifications at runtime. This option violates the C++ standard, but may be useful for reducing code size in production builds, much like defining NDEBUG. The compiler will still optimize based on the exception specifications.
-fexternal-templates
Cause #pragma interface and implementation to apply to template instantiation; template instances are emitted or not according to the location of the template definition. See Template Instantiation, for more information.

This option is deprecated.

-falt-external-templates
Similar to -fexternal-templates, but template instances are emitted or not according to the place where they are first instantiated. See Template Instantiation, for more information.

This option is deprecated.

-ffor-scope
-fno-for-scope
If -ffor-scope is specified, the scope of variables declared in a for-init-statement is limited to the for loop itself, as specified by the C++ standard. If -fno-for-scope is specified, the scope of variables declared in a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of G++, and other (traditional) implementations of C++.

The default if neither flag is given to follow the standard, but to allow and give a warning for old-style code that would otherwise be invalid, or have different behavior.

-fno-gnu-keywords
Do not recognize typeof as a keyword, so that code can use this word as an identifier. You can use the keyword __typeof__ instead. -ansi implies -fno-gnu-keywords.
-fno-implicit-templates
Never emit code for non-inline templates which are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. See Template Instantiation, for more information.
-fno-implicit-inline-templates
Don't emit code for implicit instantiations of inline templates, either. The default is to handle inlines differently so that compiles with and without optimization will need the same set of explicit instantiations.
-fno-implement-inlines
To save space, do not emit out-of-line copies of inline functions controlled by #pragma implementation. This will cause linker errors if these functions are not inlined everywhere they are called.
-fms-extensions
Disable pedantic warnings about constructs used in MFC, such as implicit int and getting a pointer to member function via non-standard syntax.
-fno-nonansi-builtins
Disable built-in declarations of functions that are not mandated by ANSI/ISO C. These include ffs, alloca, _exit, index, bzero, conjf, and other related functions.
-fno-operator-names
Do not treat the operator name keywords and, bitand, bitor, compl, not, or and xor as synonyms as keywords.
-fno-optional-diags
Disable diagnostics that the standard says a compiler does not need to issue. Currently, the only such diagnostic issued by G++ is the one for a name having multiple meanings within a class.
-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warnings. Thus, using -fpermissive will allow some nonconforming code to compile.
-frepo
Enable automatic template instantiation at link time. This option also implies -fno-implicit-templates. See Template Instantiation, for more information.
-fno-rtti
Disable generation of information about every class with virtual functions for use by the C++ runtime type identification features (dynamic_cast and typeid). If you don't use those parts of the language, you can save some space by using this flag. Note that exception handling uses the same information, but it will generate it as needed.
-fstats
Emit statistics about front-end processing at the end of the compilation. This information is generally only useful to the G++ development team.
-ftemplate-depth-n
Set the maximum instantiation depth for template classes to n. A limit on the template instantiation depth is needed to detect endless recursions during template class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum depth greater than 17.
-fuse-cxa-atexit
Register destructors for objects with static storage duration with the __cxa_atexit function rather than the atexit function. This option is required for fully standards-compliant handling of static destructors, but will only work if your C library supports __cxa_atexit.
-fvtable-gc
Emit special relocations for vtables and virtual function references so that the linker can identify unused virtual functions and zero out vtable slots that refer to them. This is most useful with -ffunction-sections and -Wl,--gc-sections, in order to also discard the functions themselves.

This optimization requires GNU as and GNU ld. Not all systems support this option. -Wl,--gc-sections is ignored without -static.

-fno-weak
Do not use weak symbol support, even if it is provided by the linker. By default, G++ will use weak symbols if they are available. This option exists only for testing, and should not be used by end-users; it will result in inferior code and has no benefits. This option may be removed in a future release of G++.
-nostdinc++
Do not search for header files in the standard directories specific to C++, but do still search the other standard directories. (This option is used when building the C++ library.)

In addition, these optimization, warning, and code generation options have meanings only for C++ programs:

-fno-default-inline
Do not assume inline for functions defined inside a class scope. See Options That Control Optimization. Note that these functions will have linkage like inline functions; they just won't be inlined by default.
-Wabi (C++ only)
Warn when G++ generates code that is probably not compatible with the vendor-neutral C++ ABI. Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated will be compatible.

You should rewrite your code to avoid these warnings if you are concerned about the fact that code generated by G++ may not be binary compatible with code generated by other compilers.

The known incompatibilities at this point include:


-Wctor-dtor-privacy (C++ only)
Warn when a class seems unusable because all the constructors or destructors in that class are private, and it has neither friends nor public static member functions. This warning is enabled by default.
-Wnon-virtual-dtor (C++ only)
Warn when a class appears to be polymorphic, thereby requiring a virtual destructor, yet it declares a non-virtual one. This warning is enabled by -Wall.
-Wreorder (C++ only)
Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance:
          struct A {
            int i;
            int j;
            A(): j (0), i (1) { }
          };
     

The compiler will rearrange the member initializers for i and j to match the declaration order of the members, emitting a warning to that effect. This warning is enabled by -Wall.

The following -W... options are not affected by -Wall.

-Weffc++ (C++ only)
Warn about violations of the following style guidelines from Scott Meyers' Effective C++ book:

Also warn about violations of the following style guidelines from Scott Meyers' More Effective C++ book:

When selecting this option, be aware that the standard library headers do not obey all of these guidelines; use grep -v to filter out those warnings.

-Wno-deprecated (C++ only)
Do not warn about usage of deprecated features. See Deprecated Features.
-Wno-non-template-friend (C++ only)
Disable warnings when non-templatized friend functions are declared within a template. Since the advent of explicit template specification support in G++, if the name of the friend is an unqualified-id (i.e., friend foo(int)), the C++ language specification demands that the friend declare or define an ordinary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-ids could be interpreted as a particular specialization of a templatized function. Because this non-conforming behavior is no longer the default behavior for G++, -Wnon-template-friend allows the compiler to check existing code for potential trouble spots and is on by default. This new compiler behavior can be turned off with -Wno-non-template-friend which keeps the conformant compiler code but disables the helpful warning.
-Wold-style-cast (C++ only)
Warn if an old-style (C-style) cast to a non-void type is used within a C++ program. The new-style casts (static_cast, reinterpret_cast, and const_cast) are less vulnerable to unintended effects and much easier to search for.
-Woverloaded-virtual (C++ only)
Warn when a function declaration hides virtual functions from a base class. For example, in:
          struct A {
            virtual void f();
          };
          
          struct B: public A {
            void f(int);
          };
     

the A class version of f is hidden in B, and code like:

          B* b;
          b->f();
     

will fail to compile.

-Wno-pmf-conversions (C++ only)
Disable the diagnostic for converting a bound pointer to member function to a plain pointer.
-Wsign-promo (C++ only)
Warn when overload resolution chooses a promotion from unsigned or enumeral type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ would try to preserve unsignedness, but the standard mandates the current behavior.
-Wsynth (C++ only)
Warn when G++'s synthesis behavior does not match that of cfront. For instance:
          struct A {
            operator int ();
            A& operator = (int);
          };
          
          main ()
          {
            A a,b;
            a = b;
          }
     

In this example, G++ will synthesize a default A& operator = (const A&);, while cfront will use the user-defined operator =.


Next: , Previous: C++ Dialect Options, Up: Invoking GCC

3.6 Options Controlling Objective-C Dialect

This section describes the command-line options that are only meaningful for Objective-C programs, but you can also use most of the GNU compiler options regardless of what language your program is in. For example, you might compile a file some_class.m like this:

     gcc -g -fgnu-runtime -O -c some_class.m

In this example, -fgnu-runtime is an option meant only for Objective-C programs; you can use the other options with any language supported by GCC.

Here is a list of options that are only for compiling Objective-C programs:

-fconstant-string-class=class-name
Use class-name as the name of the class to instantiate for each literal string specified with the syntax @"...". The default class name is NXConstantString.
-fgnu-runtime
Generate object code compatible with the standard GNU Objective-C runtime. This is the default for most types of systems.
-fnext-runtime
Generate output compatible with the NeXT runtime. This is the default for NeXT-based systems, including Darwin and Mac OS X. The macro __NEXT_RUNTIME__ is predefined if (and only if) this option is used.
-gen-decls
Dump interface declarations for all classes seen in the source file to a file named sourcename.decl.
-Wno-protocol
If a class is declared to implement a protocol, a warning is issued for every method in the protocol that is not implemented by the class. The default behavior is to issue a warning for every method not explicitly implemented in the class, even if a method implementation is inherited from the superclass. If you use the -Wno-protocol option, then methods inherited from the superclass are considered to be implemented, and no warning is issued for them.
-Wselector
Warn if multiple methods of different types for the same selector are found during compilation. The check is performed on the list of methods in the final stage of compilation. Additionally, a check is performed for each selector appearing in a @selector(...) expression, and a corresponding method for that selector has been found during compilation. Because these checks scan the method table only at the end of compilation, these warnings are not produced if the final stage of compilation is not reached, for example because an error is found during compilation, or because the -fsyntax-only option is being used.
-Wundeclared-selector
Warn if a @selector(...) expression referring to an undeclared selector is found. A selector is considered undeclared if no method with that name has been declared before the @selector(...) expression, either explicitly in an @interface or @protocol declaration, or implicitly in an @implementation section. This option always performs its checks as soon as a @selector(...) expression is found, while -Wselector only performs its checks in the final stage of compilation. This also enforces the coding style convention that methods and selectors must be declared before being used.


Next: , Previous: Objective-C Dialect Options, Up: Invoking GCC

3.7 Options to Control Diagnostic Messages Formatting

Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). The options described below can be used to control the diagnostic messages formatting algorithm, e.g. how many characters per line, how often source location information should be reported. Right now, only the C++ front end can honor these options. However it is expected, in the near future, that the remaining front ends would be able to digest them correctly.

-fmessage-length=n
Try to format error messages so that they fit on lines of about n characters. The default is 72 characters for g++ and 0 for the rest of the front ends supported by GCC. If n is zero, then no line-wrapping will be done; each error message will appear on a single line.


-fdiagnostics-show-location=once
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit once source location information; that is, in case the message is too long to fit on a single physical line and has to be wrapped, the source location won't be emitted (as prefix) again, over and over, in subsequent continuation lines. This is the default behavior.
-fdiagnostics-show-location=every-line
Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit the same source location information (as prefix) for physical lines that result from the process of breaking a message which is too long to fit on a single line.


Next: , Previous: Language Independent Options, Up: Invoking GCC

3.8 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W, for example -Wimplicit to request warnings on implicit declarations. Each of these specific warning options also has a negative form beginning -Wno- to turn off warnings; for example, -Wno-implicit. This manual lists only one of the two forms, whichever is not the default.

The following options control the amount and kinds of warnings produced by GCC; for further, language-specific options also refer to C++ Dialect Options and Objective-C Dialect Options.

-fsyntax-only
Check the code for syntax errors, but don't do anything beyond that.
-pedantic
Issue all the warnings demanded by strict ISO C and ISO C++; reject all programs that use forbidden extensions, and some other programs that do not follow ISO C and ISO C++. For ISO C, follows the version of the ISO C standard specified by any -std option used.

Valid ISO C and ISO C++ programs should compile properly with or without this option (though a rare few will require -ansi or a -std option specifying the required version of ISO C). However, without this option, certain GNU extensions and traditional C and C++ features are supported as well. With this option, they are rejected.

-pedantic does not cause warning messages for use of the alternate keywords whose names begin and end with __. Pedantic warnings are also disabled in the expression that follows __extension__. However, only system header files should use these escape routes; application programs should avoid them. See Alternate Keywords.

Some users try to use -pedantic to check programs for strict ISO C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all—only those for which ISO C requires a diagnostic, and some others for which diagnostics have been added.

A feature to report any failure to conform to ISO C might be useful in some instances, but would require considerable additional work and would be quite different from -pedantic. We don't have plans to support such a feature in the near future.

Where the standard specified with -std represents a GNU extended dialect of C, such as gnu89 or gnu99, there is a corresponding base standard, the version of ISO C on which the GNU extended dialect is based. Warnings from -pedantic are given where they are required by the base standard. (It would not make sense for such warnings to be given only for features not in the specified GNU C dialect, since by definition the GNU dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.)

-pedantic-errors
Like -pedantic, except that errors are produced rather than warnings.
-w
Inhibit all warning messages.
-Wno-import
Inhibit warning messages about the use of #import.
-Wchar-subscripts
Warn if an array subscript has type char. This is a common cause of error, as programmers often forget that this type is signed on some machines.
-Wcomment
Warn whenever a comment-start sequence /* appears in a /* comment, or whenever a Backslash-Newline appears in a // comment.
-Wformat
Check calls to printf and scanf, etc., to make sure that the arguments supplied have types appropriate to the format string specified, and that the conversions specified in the format string make sense. This includes standard functions, and others specified by format attributes (see Function Attributes), in the printf, scanf, strftime and strfmon (an X/Open extension, not in the C standard) families.

The formats are checked against the format features supported by GNU libc version 2.2. These include all ISO C90 and C99 features, as well as features from the Single Unix Specification and some BSD and GNU extensions. Other library implementations may not support all these features; GCC does not support warning about features that go beyond a particular library's limitations. However, if -pedantic is used with -Wformat, warnings will be given about format features not in the selected standard version (but not for strfmon formats, since those are not in any version of the C standard). See Options Controlling C Dialect.

Since -Wformat also checks for null format arguments for several functions, -Wformat also implies -Wnonnull.

-Wformat is included in -Wall. For more control over some aspects of format checking, the options -Wno-format-y2k, -Wno-format-extra-args, -Wno-format-zero-length, -Wformat-nonliteral, -Wformat-security, and -Wformat=2 are available, but are not included in -Wall.

-Wno-format-y2k
If -Wformat is specified, do not warn about strftime formats which may yield only a two-digit year.
-Wno-format-extra-args
If -Wformat is specified, do not warn about excess arguments to a printf or scanf format function. The C standard specifies that such arguments are ignored.

Where the unused arguments lie between used arguments that are specified with $ operand number specifications, normally warnings are still given, since the implementation could not know what type to pass to va_arg to skip the unused arguments. However, in the case of scanf formats, this option will suppress the warning if the unused arguments are all pointers, since the Single Unix Specification says that such unused arguments are allowed.

-Wno-format-zero-length
If -Wformat is specified, do not warn about zero-length formats. The C standard specifies that zero-length formats are allowed.
-Wformat-nonliteral
If -Wformat is specified, also warn if the format string is not a string literal and so cannot be checked, unless the format function takes its format arguments as a va_list.
-Wformat-security
If -Wformat is specified, also warn about uses of format functions that represent possible security problems. At present, this warns about calls to printf and scanf functions where the format string is not a string literal and there are no format arguments, as in printf (foo);. This may be a security hole if the format string came from untrusted input and contains %n. (This is currently a subset of what -Wformat-nonliteral warns about, but in future warnings may be added to -Wformat-security that are not included in -Wformat-nonliteral.)
-Wformat=2
Enable -Wformat plus format checks not included in -Wformat. Currently equivalent to -Wformat -Wformat-nonliteral -Wformat-security.
-Wnonnull
Warn about passing a null pointer for arguments marked as requiring a non-null value by the nonnull function attribute.

-Wnonnull is included in -Wall and -Wformat. It can be disabled with the -Wno-nonnull option.

-Wimplicit-int
Warn when a declaration does not specify a type.
-Wimplicit-function-declaration
-Werror-implicit-function-declaration
Give a warning (or error) whenever a function is used before being declared.
-Wimplicit
Same as -Wimplicit-int and -Wimplicit-function-declaration.
-Wmain
Warn if the type of main is suspicious. main should be a function with external linkage, returning int, taking either zero arguments, two, or three arguments of appropriate types.
-Wmissing-braces
Warn if an aggregate or union initializer is not fully bracketed. In the following example, the initializer for a is not fully bracketed, but that for b is fully bracketed.
          int a[2][2] = { 0, 1, 2, 3 };
          int b[2][2] = { { 0, 1 }, { 2, 3 } };
     

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected, or when operators are nested whose precedence people often get confused about.

Also warn about constructions where there may be confusion to which if statement an else branch belongs. Here is an example of such a case:

          {
            if (a)
              if (b)
                foo ();
            else
              bar ();
          }
     

In C, every else branch belongs to the innermost possible if statement, which in this example is if (b). This is often not what the programmer expected, as illustrated in the above example by indentation the programmer chose. When there is the potential for this confusion, GCC will issue a warning when this flag is specified. To eliminate the warning, add explicit braces around the innermost if statement so there is no way the else could belong to the enclosing if. The resulting code would look like this:

          {
            if (a)
              {
                if (b)
                  foo ();
                else
                  bar ();
              }
          }
     

-Wsequence-point
Warn about code that may have undefined semantics because of violations of sequence point rules in the C standard.

The C standard defines the order in which expressions in a C program are evaluated in terms of sequence points, which represent a partial ordering between the execution of parts of the program: those executed before the sequence point, and those executed after it. These occur after the evaluation of a full expression (one which is not part of a larger expression), after the evaluation of the first operand of a &&, ||, ? : or , (comma) operator, before a function is called (but after the evaluation of its arguments and the expression denoting the called function), and in certain other places. Other than as expressed by the sequence point rules, the order of evaluation of subexpressions of an expression is not specified. All these rules describe only a partial order rather than a total order, since, for example, if two functions are called within one expression with no sequence point between them, the order in which the functions are called is not specified. However, the standards committee have ruled that function calls do not overlap.

It is not specified when between sequence points modifications to the values of objects take effect. Programs whose behavior depends on this have undefined behavior; the C standard specifies that “Between the previous and next sequence point an object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be read only to determine the value to be stored.”. If a program breaks these rules, the results on any particular implementation are entirely unpredictable.

Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and a[i++] = i;. Some more complicated cases are not diagnosed by this option, and it may give an occasional false positive result, but in general it has been found fairly effective at detecting this sort of problem in programs.

The present implementation of this option only works for C programs. A future implementation may also work for C++ programs.

The C standard is worded confusingly, therefore there is some debate over the precise meaning of the sequence point rules in subtle cases. Links to discussions of the problem, including proposed formal definitions, may be found on our readings page, at http://gcc.gnu.org/readings.html.

-Wreturn-type
Warn whenever a function is defined with a return-type that defaults to int. Also warn about any return statement with no return-value in a function whose return-type is not void.

For C++, a function without return type always produces a diagnostic message, even when -Wno-return-type is specified. The only exceptions are main and functions defined in system headers.

-Wswitch
Warn whenever a switch statement has an index of enumeral type and lacks a case for one or more of the named codes of that enumeration. (The presence of a default label prevents this warning.) case labels outside the enumeration range also provoke warnings when this option is used.
-Wswitch-default
Warn whenever a switch statement does not have a default case.
-Wswitch-enum
Warn whenever a switch statement has an index of enumeral type and lacks a case for one or more of the named codes of that enumeration. case labels outside the enumeration range also provoke warnings when this option is used.
-Wtrigraphs
Warn if any trigraphs are encountered that might change the meaning of the program (trigraphs within comments are not warned about).
-Wunused-function
Warn whenever a static function is declared but not defined or a non\-inline static function is unused.
-Wunused-label
Warn whenever a label is declared but not used.

To suppress this warning use the unused attribute (see Variable Attributes).

-Wunused-parameter
Warn whenever a function parameter is unused aside from its declaration.

To suppress this warning use the unused attribute (see Variable Attributes).

-Wunused-variable
Warn whenever a local variable or non-constant static variable is unused aside from its declaration

To suppress this warning use the unused attribute (see Variable Attributes).

-Wunused-value
Warn whenever a statement computes a result that is explicitly not used.

To suppress this warning cast the expression to void.

-Wunused
All the above -Wunused options combined.

In order to get a warning about an unused function parameter, you must either specify -W -Wunused or separately specify -Wunused-parameter.

-Wuninitialized
Warn if an automatic variable is used without first being initialized or if a variable may be clobbered by a setjmp call.

These warnings are possible only in optimizing compilation, because they require data flow information that is computed only when optimizing. If you don't specify -O, you simply won't get these warnings.

These warnings occur only for variables that are candidates for register allocation. Therefore, they do not occur for a variable that is declared volatile, or whose address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a value that itself is never used, because such computations may be deleted by data flow analysis before the warnings are printed.

These warnings are made optional because GCC is not smart enough to see all the reasons why the code might be correct despite appearing to have an error. Here is one example of how this can happen:

          {
            int x;
            switch (y)
              {
              case 1: x = 1;
                break;
              case 2: x = 4;
                break;
              case 3: x = 5;
              }
            foo (x);
          }
     

If the value of y is always 1, 2 or 3, then x is always initialized, but GCC doesn't know this. Here is another common case:

          {
            int save_y;
            if (change_y) save_y = y, y = new_y;
            ...
            if (change_y) y = save_y;
          }
     

This has no bug because save_y is used only if it is set.

This option also warns when a non-volatile automatic variable might be changed by a call to longjmp. These warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be called; in fact, a signal handler could call it at any point in the code. As a result, you may get a warning even when there is in fact no problem because longjmp cannot in fact be called at the place which would cause a problem.

Some spurious warnings can be avoided if you declare all the functions you use that never return as noreturn. See Function Attributes.

-Wunknown-pragmas
Warn when a #pragma directive is encountered which is not understood by GCC. If this command line option is used, warnings will even be issued for unknown pragmas in system header files. This is not the case if the warnings were only enabled by the -Wall command line option.
-Wstrict-aliasing
This option is only active when -fstrict-aliasing is active. It warns about code which might break the strict aliasing rules that the compiler is using for optimization. The warning does not catch all cases, but does attempt to catch the more common pitfalls. It is included in -Wall.
-Wall
All of the above -W options combined. This enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros. This also enables some language-specific warnings described in C++ Dialect Options and Objective-C Dialect Options.

The following -W... options are not implied by -Wall. Some of them warn about constructions that users generally do not consider questionable, but which occasionally you might wish to check for; others warn about constructions that are necessary or hard to avoid in some cases, and there is no simple way to modify the code to suppress the warning.

-W
Print extra warning messages for these events:
-Wno-div-by-zero
Do not warn about compile-time integer division by zero. Floating point division by zero is not warned about, as it can be a legitimate way of obtaining infinities and NaNs.
-Wsystem-headers
Print warning messages for constructs found in system header files. Warnings from system headers are normally suppressed, on the assumption that they usually do not indicate real problems and would only make the compiler output harder to read. Using this command line option tells GCC to emit warnings from system headers as if they occurred in user code. However, note that using -Wall in conjunction with this option will not warn about unknown pragmas in system headers—for that, -Wunknown-pragmas must also be used.
-Wfloat-equal
Warn if floating point values are used in equality comparisons.

The idea behind this is that sometimes it is convenient (for the programmer) to consider floating-point values as approximations to infinitely precise real numbers. If you are doing this, then you need to compute (by analyzing the code, or in some other way) the maximum or likely maximum error that the computation introduces, and allow for it when performing comparisons (and when producing output, but that's a different problem). In particular, instead of testing for equality, you would check to see whether the two values have ranges that overlap; and this is done with the relational operators, so equality comparisons are probably mistaken.

-Wtraditional (C only)
Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and/or problematic constructs which should be avoided.
-Wundef
Warn if an undefined identifier is evaluated in an #if directive.
-Wendif-labels
Warn whenever an #else or an #endif are followed by text.
-Wshadow
Warn whenever a local variable shadows another local variable, parameter or global variable or whenever a built-in function is shadowed.
-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.
-Wpointer-arith
Warn about anything that depends on the “size of” a function type or of void. GNU C assigns these types a size of 1, for convenience in calculations with void * pointers and pointers to functions.
-Wbad-function-cast (C only)
Warn whenever a function call is cast to a non-matching type. For example, warn if int malloc() is cast to anything *.
-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qualifier from the target type. For example, warn if a const char * is cast to an ordinary char *.
-Wcast-align
Warn whenever a pointer is cast such that the required alignment of the target is increased. For example, warn if a char * is cast to an int * on machines where integers can only be accessed at two- or four-byte boundaries.
-Wwrite-strings
When compiling C, give string constants the type const char[length] so that copying the address of one into a non-const char * pointer will get a warning; when compiling C++, warn about the deprecated conversion from string constants to char *. These warnings will help you find at compile time code that can try to write into a string constant, but only if you have been very careful about using const in declarations and prototypes. Otherwise, it will just be a nuisance; this is why we did not make -Wall request these warnings.
-Wconversion
Warn if a prototype causes a type conversion that is different from what would happen to the same argument in the absence of a prototype. This includes conversions of fixed point to floating and vice versa, and conversions changing the width or signedness of a fixed point argument except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an unsigned type. For example, warn about the assignment x = -1 if x is unsigned. But do not warn about explicit casts like (unsigned) -1.

-Wsign-compare
Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to unsigned. This warning is enabled by -W, and by -Wall in C++ only.
-Waggregate-return
Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also elicits a warning.)
-Wstrict-prototypes (C only)
Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted without a warning if preceded by a declaration which specifies the argument types.)
-Wmissing-prototypes (C only)
Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself provides a prototype. The aim is to detect global functions that fail to be declared in header files.
-Wmissing-declarations (C only)
Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a prototype. Use this option to detect global functions that are not declared in header files.
-Wmissing-noreturn
Warn about functions which might be candidates for attribute noreturn. Note these are only possible candidates, not absolute ones. Care should be taken to manually verify functions actually do not ever return before adding the noreturn attribute, otherwise subtle code generation bugs could be introduced. You will not get a warning for main in hosted C environments.
-Wmissing-format-attribute
If -Wformat is enabled, also warn about functions which might be candidates for format attributes. Note these are only possible candidates, not absolute ones. GCC will guess that format attributes might be appropriate for any function that calls a function like vprintf or vscanf, but this might not always be the case, and some functions for which format attributes are appropriate may not be detected. This option has no effect unless -Wformat is enabled (possibly by -Wall).
-Wno-multichar
Do not warn if a multicharacter constant ('FOOF') is used. Usually they indicate a typo in the user's code, as they have implementation-defined values, and should not be used in portable code.
-Wno-deprecated-declarations
Do not warn about uses of functions, variables, and types marked as deprecated by using the deprecated attribute. (see Function Attributes, see Variable Attributes, see Type Attributes.)
-Wpacked
Warn if a structure is given the packed attribute, but the packed attribute has no effect on the layout or size of the structure. Such structures may be mis-aligned for little benefit. For instance, in this code, the variable f.x in struct bar will be misaligned even though struct bar does not itself have the packed attribute:
          struct foo {
            int x;
            char a, b, c, d;
          } __attribute__((packed));
          struct bar {
            char z;
            struct foo f;
          };
     

-Wpadded
Warn if padding is included in a structure, either to align an element of the structure or to align the whole structure. Sometimes when this happens it is possible to rearrange the fields of the structure to reduce the padding and so make the structure smaller.
-Wredundant-decls
Warn if anything is declared more than once in the same scope, even in cases where multiple declaration is valid and changes nothing.
-Wnested-externs (C only)
Warn if an extern declaration is encountered within a function.
-Wunreachable-code
Warn if the compiler detects that code will never be executed.

This option is intended to warn when the compiler detects that at least a whole line of source code will never be executed, because some condition is never satisfied or because it is after a procedure that never returns.

It is possible for this option to produce a warning even though there are circumstances under which part of the affected line can be executed, so care should be taken when removing apparently-unreachable code.

For instance, when a function is inlined, a warning may mean that the line is unreachable in only one inlined copy of the function.

This option is not made part of -Wall because in a debugging version of a program there is often substantial code which checks correct functioning of the program and is, hopefully, unreachable because the program does work. Another common use of unreachable code is to provide behavior which is selectable at compile-time.

-Winline
Warn if a function can not be inlined and it was declared as inline. Even with this option, the compiler will not warn about failures to inline functions declared in system headers.

The compiler uses a variety of heuristics to determine whether or not to inline a function. For example, the compiler takes into account the size of the function being inlined and the the amount of inlining that has already been done in the current function. Therefore, seemingly insignificant changes in the source program can cause the warnings produced by -Winline to appear or disappear.

-Wlong-long
Warn if long long type is used. This is default. To inhibit the warning messages, use -Wno-long-long. Flags -Wlong-long and -Wno-long-long are taken into account only when -pedantic flag is used.
-Wdisabled-optimization
Warn if a requested optimization pass is disabled. This warning does not generally indicate that there is anything wrong with your code; it merely indicates that GCC's optimizers were unable to handle the code effectively. Often, the problem is that your code is too big or too complex; GCC will refuse to optimize programs when the optimization itself is likely to take inordinate amounts of time.
-Werror
Make all warnings into errors.


Next: , Previous: Warning Options, Up: Invoking GCC

3.9 Options for Debugging Your Program or GCC

GCC has various special options that are used for debugging either your program or GCC:

-g
Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, -g enables use of extra debugging information that only GDB can use; this extra information makes debugging work better in GDB but will probably make other debuggers crash or refuse to read the program. If you want to control for certain whether to generate the extra information, use -gstabs+, -gstabs, -gxcoff+, -gxcoff, -gdwarf-1+, -gdwarf-1, or -gvms (see below).

Unlike most other C compilers, GCC allows you to use -g with -O. The shortcuts taken by optimized code may occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where you did not expect it; some statements may not be executed because they compute constant results or their values were already at hand; some statements may execute in different places because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the optimizer for programs that might have bugs.

The following options are useful when GCC is generated with the capability for more than one debugging format.

-ggdb
Produce debugging information for use by GDB. This means to use the most expressive format available (DWARF 2, stabs, or the native format if neither of those are supported), including GDB extensions if at all possible.
-gstabs
Produce debugging information in stabs format (if that is supported), without GDB extensions. This is the format used by DBX on most BSD systems. On MIPS, Alpha and System V Release 4 systems this option produces stabs debugging output which is not understood by DBX or SDB. On System V Release 4 systems this option requires the GNU assembler.
-gstabs+
Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program.
-gcoff
Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems prior to System V Release 4.
-gxcoff
Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM RS/6000 systems.
-gxcoff+
Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program, and may cause assemblers other than the GNU assembler (GAS) to fail with an error.
-gdwarf
Produce debugging information in DWARF version 1 format (if that is supported). This is the format used by SDB on most System V Release 4 systems.

This option is deprecated.

-gdwarf+
Produce debugging information in DWARF version 1 format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program.

This option is deprecated.

-gdwarf-2
Produce debugging information in DWARF version 2 format (if that is supported). This is the format used by DBX on IRIX 6.
-gvms
Produce debugging information in VMS debug format (if that is supported). This is the format used by DEBUG on VMS systems.
-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gvmslevel
Request debugging information and also use level to specify how much information. The default level is 2.

Level 1 produces minimal information, enough for making backtraces in parts of the program that you don't plan to debug. This includes descriptions of functions and external variables, but no information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro expansion when you use -g3.

Note that in order to avoid confusion between DWARF1 debug level 2, and DWARF2, neither -gdwarf nor -gdwarf-2 accept a concatenated debug level. Instead use an additional -glevel option to change the debug level for DWARF1 or DWARF2.

-feliminate-dwarf2-dups
Compress DWARF2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when generating DWARF2 debugging information with -gdwarf-2.


-p
Generate extra code to write profile information suitable for the analysis program prof. You must use this option when compiling the source files you want data about, and you must also use it when linking.


-pg
Generate extra code to write profile information suitable for the analysis program gprof. You must use this option when compiling the source files you want data about, and you must also use it when linking.
-Q
Makes the compiler print out each function name as it is compiled, and print some statistics about each pass when it finishes.
-ftime-report
Makes the compiler print some statistics about the time consumed by each pass when it finishes.
-fmem-report
Makes the compiler print some statistics about permanent memory allocation when it finishes.
-fprofile-arcs
Instrument arcs during compilation to generate coverage data or for profile-directed block ordering. During execution the program records how many times each branch is executed and how many times it is taken. When the compiled program exits it saves this data to a file called auxname.da for each source file. auxname is generated from the name of the output file, if explicitly specified and it is not the final executable, otherwise it is the basename of the source file. In both cases any suffix is removed (e.g. foo.da for input file dir/foo.c, or dir/foo.da for output file specified as -o dir/foo.o).

For profile-directed block ordering, compile the program with -fprofile-arcs plus optimization and code generation options, generate the arc profile information by running the program on a selected workload, and then compile the program again with the same optimization and code generation options plus -fbranch-probabilities (see Options that Control Optimization).

The other use of -fprofile-arcs is for use with gcov, when it is used with the -ftest-coverage option.

With -fprofile-arcs, for each function of your program GCC creates a program flow graph, then finds a spanning tree for the graph. Only arcs that are not on the spanning tree have to be instrumented: the compiler adds code to count the number of times that these arcs are executed. When an arc is the only exit or only entrance to a block, the instrumentation code can be added to the block; otherwise, a new basic block must be created to hold the instrumentation code.

-ftest-coverage
Create data files for the gcov code-coverage utility (see gcov—a Test Coverage Program). See -fprofile-arcs option above for a description of auxname.
auxname.bb
A mapping from basic blocks to line numbers, which gcov uses to associate basic block execution counts with line numbers.
auxname.bbg
A list of all arcs in the program flow graph. This allows gcov to reconstruct the program flow graph, so that it can compute all basic block and arc execution counts from the information in the auxname.da file.

Use -ftest-coverage with -fprofile-arcs; the latter option adds instrumentation to the program, which then writes execution counts to another data file:

auxname.da
Runtime arc execution counts, used in conjunction with the arc information in the file auxname.bbg.

Coverage data will map better to the source files if -ftest-coverage is used without optimization.

-dletters
Says to make debugging dumps during compilation at times specified by letters. This is used for debugging the compiler. The file names for most of the dumps are made by appending a pass number and a word to the dumpname. dumpname is generated from the name of the output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source file. In both cases any suffix is removed (e.g. foo.00.rtl or foo.01.sibling). Here are the possible letters for use in letters, and their meanings:
A
Annotate the assembler output with miscellaneous debugging information.
b
Dump after computing branch probabilities, to file.14.bp.
B
Dump after block reordering, to file.32.bbro.
c
Dump after instruction combination, to the file file.19.combine.
C
Dump after the first if conversion, to the file file.15.ce1.
d
Dump after delayed branch scheduling, to file.34.dbr.
D
Dump all macro definitions, at the end of preprocessing, in addition to normal output.
e
Dump after SSA optimizations, to file.04.ssa and file.07.ussa.
E
Dump after the second if conversion, to file.29.ce3.
f
Dump after control and data flow analysis, to file.14.cfg. Also dump after life analysis, to file.18.life.
F
Dump after purging ADDRESSOF codes, to file.10.addressof.
g
Dump after global register allocation, to file.24.greg.
G
Dump after GCSE, to file.11.gcse.
h
Dump after finalization of EH handling code, to file.02.eh.
i
Dump after sibling call optimizations, to file.01.sibling.
j
Dump after the first jump optimization, to file.03.jump.
k
Dump after conversion from registers to stack, to file.31.stack.
l
Dump after local register allocation, to file.23.lreg.
L
Dump after loop optimization, to file.12.loop.
M
Dump after performing the machine dependent reorganization pass, to file.33.mach.
n
Dump after register renumbering, to file.28.rnreg.
N
Dump after the register move pass, to file.21.regmove.
o
Dump after post-reload optimizations, to file.25.postreload.
r
Dump after RTL generation, to file.00.rtl.
R
Dump after the second scheduling pass, to file.30.sched2.
s
Dump after CSE (including the jump optimization that sometimes follows CSE), to file.09.cse.
S
Dump after the first scheduling pass, to file.22.sched.
t
Dump after the second CSE pass (including the jump optimization that sometimes follows CSE), to file.17.cse2.
T
Dump after running tracer, to file.16.tracer.
u
Dump after null pointer elimination pass to file.08.null.
w
Dump after the second flow pass, to file.26.flow2.
W
Dump after SSA conditional constant propagation, to file.05.ssaccp.
X
Dump after SSA dead code elimination, to file.06.ssadce.
z
Dump after the peephole pass, to file.27.peephole2.
a
Produce all the dumps listed above.
m
Print statistics on memory usage, at the end of the run, to standard error.
p
Annotate the assembler output with a comment indicating which pattern and alternative was used. The length of each instruction is also printed.
P
Dump the RTL in the assembler output as a comment before each instruction. Also turns on -dp annotation.
v
For each of the other indicated dump files (except for file.00.rtl), dump a representation of the control flow graph suitable for viewing with VCG to file.pass.vcg.
x
Just generate RTL for a function instead of compiling it. Usually used with r.
y
Dump debugging information during parsing, to standard error.

-fdump-unnumbered
When doing debugging dumps (see -d option above), suppress instruction numbers and line number note output. This makes it more feasible to use diff on debugging dumps for compiler invocations with different options, in particular with and without -g.
-fdump-translation-unit (C and C++ only)
-fdump-translation-unit-options (C and C++ only)
Dump a representation of the tree structure for the entire translation unit to a file. The file name is made by appending .tu to the source file name. If the -options form is used, options controls the details of the dump as described for the -fdump-tree options.
-fdump-class-hierarchy (C++ only)
-fdump-class-hierarchy-options (C++ only)
Dump a representation of each class's hierarchy and virtual function table layout to a file. The file name is made by appending .class to the source file name. If the -options form is used, options controls the details of the dump as described for the -fdump-tree options.
-fdump-tree-switch (C++ only)
-fdump-tree-switch-options (C++ only)
Control the dumping at various stages of processing the intermediate language tree to a file. The file name is generated by appending a switch specific suffix to the source file name. If the -options form is used, options is a list of - separated options that control the details of the dump. Not all options are applicable to all dumps, those which are not meaningful will be ignored. The following options are available
address
Print the address of each node. Usually this is not meaningful as it changes according to the environment and source file. Its primary use is for tying up a dump file with a debug environment.
slim
Inhibit dumping of members of a scope or body of a function merely because that scope has been reached. Only dump such items when they are directly reachable by some other path.
all
Turn on all options.

The following tree dumps are possible:

original
Dump before any tree based optimization, to file.original.
optimized
Dump after all tree based optimization, to file.optimized.
inlined
Dump after function inlining, to file.inlined.

-frandom-seed=string
This option provides a seed that GCC uses when it would otherwise use random numbers. At present, this is used to generate certain symbol names that have to be different in every compiled file.

The string should be different for every file you compile.

-fsched-verbose=n
On targets that use instruction scheduling, this option controls the amount of debugging output the scheduler prints. This information is written to standard error, unless -dS or -dR is specified, in which case it is output to the usual dump listing file, .sched or .sched2 respectively. However for n greater than nine, the output is always printed to standard error.

For n greater than zero, -fsched-verbose outputs the same information as -dRS. For n greater than one, it also output basic block probabilities, detailed ready list information and unit/insn info. For n greater than two, it includes RTL at abort point, control-flow and regions info. And for n over four, -fsched-verbose also includes dependence info.

-save-temps
Store the usual “temporary” intermediate files permanently; place them in the current directory and name them based on the source file. Thus, compiling foo.c with -c -save-temps would produce files foo.i and foo.s, as well as foo.o. This creates a preprocessed foo.i output file even though the compiler now normally uses an integrated preprocessor.
-time
Report the CPU time taken by each subprocess in the compilation sequence. For C source files, this is the compiler proper and assembler (plus the linker if linking is done). The output looks like this:
          # cc1 0.12 0.01
          # as 0.00 0.01
     

The first number on each line is the “user time,” that is time spent executing the program itself. The second number is “system time,” time spent executing operating system routines on behalf of the program. Both numbers are in seconds.

-print-file-name=library
Print the full absolute name of the library file library that would be used when linking—and don't do anything else. With this option, GCC does not compile or link anything; it just prints the file name.
-print-multi-directory
Print the directory name corresponding to the multilib selected by any other switches present in the command line. This directory is supposed to exist in GCC_EXEC_PREFIX.
-print-multi-lib
Print the mapping from multilib directory names to compiler switches that enable them. The directory name is separated from the switches by ;, and each switch starts with an @ instead of the -, without spaces between multiple switches. This is supposed to ease shell-processing.
-print-prog-name=program
Like -print-file-name, but searches for a program such as cpp.
-print-libgcc-file-name
Same as -print-file-name=libgcc.a.

This is useful when you use -nostdlib or -nodefaultlibs but you do want to link with libgcc.a. You can do

          gcc -nostdlib files... `gcc -print-libgcc-file-name`
     

-print-search-dirs
Print the name of the configured installation directory and a list of program and library directories gcc will search—and don't do anything else.

This is useful when gcc prints the error message installation problem, cannot exec cpp0: No such file or directory. To resolve this you either need to put cpp0 and the other compiler components where gcc expects to find them, or you can set the environment variable GCC_EXEC_PREFIX to the directory where you installed them. Don't forget the trailing '/'. See Environment Variables.

-dumpmachine
Print the compiler's target machine (for example, i686-pc-linux-gnu)—and don't do anything else.
-dumpversion
Print the compiler version (for example, 3.0)—and don't do anything else.
-dumpspecs
Print the compiler's built-in specs—and don't do anything else. (This is used when GCC itself is being built.) See Spec Files.


Next: , Previous: Debugging Options, Up: Invoking GCC

3.10 Options That Control Optimization

These options control various sorts of optimizations.

Without any optimization option, the compiler's goal is to reduce the cost of compilation and to make debugging produce the expected results. Statements are independent: if you stop the program with a breakpoint between statements, you can then assign a new value to any variable or change the program counter to any other statement in the function and get exactly the results you would expect from the source code.

Turning on optimization flags makes the compiler attempt to improve the performance and/or code size at the expense of compilation time and possibly the ability to debug the program.

Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed.

-O
-O1
Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function.

With -O, the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time.

-O turns on the following optimization flags:

          -fdefer-pop 
          -fmerge-constants 
          -fthread-jumps 
          -floop-optimize 
          -fcrossjumping 
          -fif-conversion 
          -fif-conversion2 
          -fdelayed-branch 
          -fguess-branch-probability 
          -fcprop-registers
     

-O also turns on -fomit-frame-pointer on machines where doing so does not interfere with debugging.

-O2
Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. The compiler does not perform loop unrolling or function inlining when you specify -O2. As compared to -O, this option increases both compilation time and the performance of the generated code.

-O2 turns on all optimization flags specified by -O. It also turns on the following optimization flags:

          -fforce-mem 
          -foptimize-sibling-calls 
          -fstrength-reduce 
          -fcse-follow-jumps  -fcse-skip-blocks 
          -frerun-cse-after-loop  -frerun-loop-opt 
          -fgcse   -fgcse-lm   -fgcse-sm 
          -fdelete-null-pointer-checks 
          -fexpensive-optimizations 
          -fregmove 
          -fschedule-insns  -fschedule-insns2 
          -fsched-interblock -fsched-spec 
          -fcaller-saves 
          -fpeephole2 
          -freorder-blocks  -freorder-functions 
          -fstrict-aliasing 
          -falign-functions  -falign-jumps 
          -falign-loops  -falign-labels
     

Please note the warning under -fgcse about invoking -O2 on programs that use computed gotos.

-O3
Optimize yet more. -O3 turns on all optimizations specified by -O2 and also turns on the -finline-functions and -frename-registers options.
-O0
Do not optimize. This is the default.
-Os
Optimize for size. -Os enables all -O2 optimizations that do not typically increase code size. It also performs further optimizations designed to reduce code size.

-Os disables the following optimization flags:

          -falign-functions  -falign-jumps  -falign-loops 
          -falign-labels  -freorder-blocks  -fprefetch-loop-arrays
     

If you use multiple -O options, with or without level numbers, the last such option is the one that is effective.

Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed—the one you typically will use. You can figure out the other form by either removing no- or adding it.

The following options control specific optimizations. They are either activated by -O options or are related to ones that are. You can use the following flags in the rare cases when “fine-tuning” of optimizations to be performed is desired.

-fno-default-inline
Do not make member functions inline by default merely because they are defined inside the class scope (C++ only). Otherwise, when you specify -O, member functions defined inside class scope are compiled inline by default; i.e., you don't need to add inline in front of the member function name.
-fno-defer-pop
Always pop the arguments to each function call as soon as that function returns. For machines which must pop arguments after a function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once.

Disabled at levels -O, -O2, -O3, -Os.

-fforce-mem
Force memory operands to be copied into registers before doing arithmetic on them. This produces better code by making all memory references potential common subexpressions. When they are not common subexpressions, instruction combination should eliminate the separate register-load.

Enabled at levels -O2, -O3, -Os.

-fforce-addr
Force memory address constants to be copied into registers before doing arithmetic on them. This may produce better code just as -fforce-mem may.
-fomit-frame-pointer
Don't keep the frame pointer in a register for functions that don't need one. This avoids the instructions to save, set up and restore frame pointers; it also makes an extra register available in many functions. It also makes debugging impossible on some machines.

On some machines, such as the VAX, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro FRAME_POINTER_REQUIRED controls whether a target machine supports this flag. See Register Usage (GNU Compiler Collection (GCC) Internals).

Enabled at levels -O, -O2, -O3, -Os.

-foptimize-sibling-calls
Optimize sibling and tail recursive calls.

Enabled at levels -O2, -O3, -Os.

-fno-inline
Don't pay attention to the inline keyword. Normally this option is used to keep the compiler from expanding any functions inline. Note that if you are not optimizing, no functions can be expanded inline.
-finline-functions
Integrate all simple functions into their callers. The compiler heuristically decides which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static, then the function is normally not output as assembler code in its own right.

Enabled at level -O3.

-finline-limit=n
By default, gcc limits the size of functions that can be inlined. This flag allows the control of this limit for functions that are explicitly marked as inline (i.e., marked with the inline keyword or defined within the class definition in c++). n is the size of functions that can be inlined in number of pseudo instructions (not counting parameter handling). The default value of n is 600. Increasing this value can result in more inlined code at the cost of compilation time and memory consumption. Decreasing usually makes the compilation faster and less code will be inlined (which presumably means slower programs). This option is particularly useful for programs that use inlining heavily such as those based on recursive templates with C++.

Inlining is actually controlled by a number of parameters, which may be specified individually by using --param name=value. The -finline-limit=n option sets some of these parameters as follows:

max-inline-insns
is set to n.
max-inline-insns-single
is set to n/2.
max-inline-insns-auto
is set to n/2.
min-inline-insns
is set to 130 or n/4, whichever is smaller.
max-inline-insns-rtl
is set to n.

Using -finline-limit=600 thus results in the default settings for these parameters. See below for a documentation of the individual parameters controlling inlining.

Note: pseudo instruction represents, in this particular context, an abstract measurement of function's size. In no way, it represents a count of assembly instructions and as such its exact meaning might change from one release to an another.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the function is declared static, nevertheless output a separate run-time callable version of the function. This switch does not affect extern inline functions.
-fkeep-static-consts
Emit variables declared static const when optimization isn't turned on, even if the variables aren't referenced.

GCC enables this option by default. If you want to force the compiler to check if the variable was referenced, regardless of whether or not optimization is turned on, use the -fno-keep-static-consts option.

-fmerge-constants
Attempt to merge identical constants (string constants and floating point constants) across compilation units.

This option is the default for optimized compilation if the assembler and linker support it. Use -fno-merge-constants to inhibit this behavior.

Enabled at levels -O, -O2, -O3, -Os.

-fmerge-all-constants
Attempt to merge identical constants and identical variables.

This option implies -fmerge-constants. In addition to -fmerge-constants this considers e.g. even constant initialized arrays or initialized constant variables with integral or floating point types. Languages like C or C++ require each non-automatic variable to have distinct location, so using this option will result in non-conforming behavior.

-fno-branch-count-reg
Do not use “decrement and branch” instructions on a count register, but instead generate a sequence of instructions that decrement a register, compare it against zero, then branch based upon the result. This option is only meaningful on architectures that support such instructions, which include x86, PowerPC, IA-64 and S/390.

The default is -fbranch-count-reg, enabled when -fstrength-reduce is enabled.

-fno-function-cse
Do not put function addresses in registers; make each instruction that calls a constant function contain the function's address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler output may be confused by the optimizations performed when this option is not used.

The default is -ffunction-cse

-fno-zero-initialized-in-bss
If the target supports a BSS section, GCC by default puts variables that are initialized to zero into BSS. This can save space in the resulting code.

This option turns off this behavior because some programs explicitly rely on variables going to the data section. E.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that.

The default is -fzero-initialized-in-bss.

-fstrength-reduce
Perform the optimizations of loop strength reduction and elimination of iteration variables.

Enabled at levels -O2, -O3, -Os.

-fthread-jumps
Perform optimizations where we check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of the second branch or a point immediately following it, depending on whether the condition is known to be true or false.

Enabled at levels -O, -O2, -O3, -Os.

-fcse-follow-jumps
In common subexpression elimination, scan through jump instructions when the target of the jump is not reached by any other path. For example, when CSE encounters an if statement with an else clause, CSE will follow the jump when the condition tested is false.

Enabled at levels -O2, -O3, -Os.

-fcse-skip-blocks
This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which conditionally skip over blocks. When CSE encounters a simple if statement with no else clause, -fcse-skip-blocks causes CSE to follow the jump around the body of the if.

Enabled at levels -O2, -O3, -Os.

-frerun-cse-after-loop
Re-run common subexpression elimination after loop optimizations has been performed.

Enabled at levels -O2, -O3, -Os.

-frerun-loop-opt
Run the loop optimizer twice.

Enabled at levels -O2, -O3, -Os.

-fgcse
Perform a global common subexpression elimination pass. This pass also performs global constant and copy propagation.

Note: When compiling a program using computed gotos, a GCC extension, you may get better runtime performance if you disable the global common subexpression elimination pass by adding -fno-gcse to the command line.

Enabled at levels -O2, -O3, -Os.

-fgcse-lm
When -fgcse-lm is enabled, global common subexpression elimination will attempt to move loads which are only killed by stores into themselves. This allows a loop containing a load/store sequence to be changed to a load outside the loop, and a copy/store within the loop.

Enabled by default when gcse is enabled.

-fgcse-sm
When -fgcse-sm is enabled, A store motion pass is run after global common subexpression elimination. This pass will attempt to move stores out of loops. When used in conjunction with -fgcse-lm, loops containing a load/store sequence can be changed to a load before the loop and a store after the loop.

Enabled by default when gcse is enabled.

-floop-optimize
Perform loop optimizations: move constant expressions out of loops, simplify exit test conditions and optionally do strength-reduction and loop unrolling as well.

Enabled at levels -O, -O2, -O3, -Os.

-fcrossjumping
Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The resulting code may or may not perform better than without cross-jumping.

Enabled at levels -O, -O2, -O3, -Os.

-fif-conversion
Attempt to transform conditional jumps into branch-less equivalents. This include use of conditional moves, min, max, set flags and abs instructions, and some tricks doable by standard arithmetics. The use of conditional execution on chips where it is available is controlled by if-conversion2.

Enabled at levels -O, -O2, -O3, -Os.

-fif-conversion2
Use conditional execution (where available) to transform conditional jumps into branch-less equivalents.

Enabled at levels -O, -O2, -O3, -Os.

-fdelete-null-pointer-checks
Use global dataflow analysis to identify and eliminate useless checks for null pointers. The compiler assumes that dereferencing a null pointer would have halted the program. If a pointer is checked after it has already been dereferenced, it cannot be null.

In some environments, this assumption is not true, and programs can safely dereference null pointers. Use -fno-delete-null-pointer-checks to disable this optimization for programs which depend on that behavior.

Enabled at levels -O2, -O3, -Os.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively expensive.

Enabled at levels -O2, -O3, -Os.

-foptimize-register-move
-fregmove
Attempt to reassign register numbers in move instructions and as operands of other simple instructions in order to maximize the amount of register tying. This is especially helpful on machines with two-operand instructions.

Note -fregmove and -foptimize-register-move are the same optimization.

Enabled at levels -O2, -O3, -Os.

-fdelayed-branch
If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions.

Enabled at levels -O, -O2, -O3, -Os.

-fschedule-insns
If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable. This helps machines that have slow floating point or memory load instructions by allowing other instructions to be issued until the result of the load or floating point instruction is required.

Enabled at levels -O2, -O3, -Os.

-fschedule-insns2
Similar to -fschedule-insns, but requests an additional pass of instruction scheduling after register allocation has been done. This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than one cycle.

Enabled at levels -O2, -O3, -Os.

-fno-sched-interblock
Don't schedule instructions across basic blocks. This is normally enabled by default when scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or higher.
-fno-sched-spec
Don't allow speculative motion of non-load instructions. This is normally enabled by default when scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or higher.
-fsched-spec-load
Allow speculative motion of some load instructions. This only makes sense when scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or higher.
-fsched-spec-load-dangerous
Allow speculative motion of more load instructions. This only makes sense when scheduling before register allocation, i.e. with -fschedule-insns or at -O2 or higher.
-fcaller-saves
Enable values to be allocated in registers that will be clobbered by function calls, by emitting extra instructions to save and restore the registers around such calls. Such allocation is done only when it seems to result in better code than would otherwise be produced.

This option is always enabled by default on certain machines, usually those which have no call-preserved registers to use instead.

Enabled at levels -O2, -O3, -Os.

-fmove-all-movables
Forces all invariant computations in loops to be moved outside the loop.
-freduce-all-givs
Forces all general-induction variables in loops to be strength-reduced.

Note: When compiling programs written in Fortran, -fmove-all-movables and -freduce-all-givs are enabled by default when you use the optimizer.

These options may generate better or worse code; results are highly dependent on the structure of loops within the source code.

These two options are intended to be removed someday, once they have helped determine the efficacy of various approaches to improving loop optimizations.

Please let us (gcc@gcc.gnu.org and fortran@gnu.org) know how use of these options affects the performance of your production code. We're very interested in code that runs slower when these options are enabled.

-fno-peephole
-fno-peephole2
Disable any machine-specific peephole optimizations. The difference between -fno-peephole and -fno-peephole2 is in how they are implemented in the compiler; some targets use one, some use the other, a few use both.

-fpeephole is enabled by default. -fpeephole2 enabled at levels -O2, -O3, -Os.

-fno-guess-branch-probability
Do not guess branch probabilities using a randomized model.

Sometimes gcc will opt to use a randomized model to guess branch probabilities, when none are available from either profiling feedback (-fprofile-arcs) or __builtin_expect. This means that different runs of the compiler on the same program may produce different object code.

In a hard real-time system, people don't want different runs of the compiler to produce code that has different behavior; minimizing non-determinism is of paramount import. This switch allows users to reduce non-determinism, possibly at the expense of inferior optimization.

The default is -fguess-branch-probability at levels -O, -O2, -O3, -Os.

-freorder-blocks
Reorder basic blocks in the compiled function in order to reduce number of taken branches and improve code locality.

Enabled at levels -O2, -O3.

-freorder-functions
Reorder basic blocks in the compiled function in order to reduce number of taken branches and improve code locality. This is implemented by using special subsections text.hot for most frequently executed functions and text.unlikely for unlikely executed functions. Reordering is done by the linker so object file format must support named sections and linker must place them in a reasonable way.

Also profile feedback must be available in to make this option effective. See -fprofile-arcs for details.

Enabled at levels -O2, -O3, -Os.

-fstrict-aliasing
Allows the compiler to assume the strictest aliasing rules applicable to the language being compiled. For C (and C++), this activates optimizations based on the type of expressions. In particular, an object of one type is assumed never to reside at the same address as an object of a different type, unless the types are almost the same. For example, an unsigned int can alias an int, but not a void* or a double. A character type may alias any other type.

Pay special attention to code like this:

          union a_union {
            int i;
            double d;
          };
          
          int f() {
            a_union t;
            t.d = 3.0;
            return t.i;
          }
     

The practice of reading from a different union member than the one most recently written to (called “type-punning”) is common. Even with -fstrict-aliasing, type-punning is allowed, provided the memory is accessed through the union type. So, the code above will work as expected. However, this code might not:

          int f() {
            a_union t;
            int* ip;
            t.d = 3.0;
            ip = &t.i;
            return *ip;
          }
     

Every language that wishes to perform language-specific alias analysis should define a function that computes, given an tree node, an alias set for the node. Nodes in different alias sets are not allowed to alias. For an example, see the C front-end function c_get_alias_set.

Enabled at levels -O2, -O3, -Os.

-falign-functions
-falign-functions=n
Align the start of functions to the next power-of-two greater than n, skipping up to n bytes. For instance, -falign-functions=32 aligns functions to the next 32-byte boundary, but -falign-functions=24 would align to the next 32-byte boundary only if this can be done by skipping 23 bytes or less.

-fno-align-functions and -falign-functions=1 are equivalent and mean that functions will not be aligned.

Some assemblers only support this flag when n is a power of two; in that case, it is rounded up.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels -O2, -O3.

-falign-labels
-falign-labels=n
Align all branch targets to a power-of-two boundary, skipping up to n bytes like -falign-functions. This option can easily make code slower, because it must insert dummy operations for when the branch target is reached in the usual flow of the code.

-fno-align-labels and -falign-labels=1 are equivalent and mean that labels will not be aligned.

If -falign-loops or -falign-jumps are applicable and are greater than this value, then their values are used instead.

If n is not specified or is zero, use a machine-dependent default which is very likely to be 1, meaning no alignment.

Enabled at levels -O2, -O3.

-falign-loops
-falign-loops=n
Align loops to a power-of-two boundary, skipping up to n bytes like -falign-functions. The hope is that the loop will be executed many times, which will make up for any execution of the dummy operations.

-fno-align-loops and -falign-loops=1 are equivalent and mean that loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels -O2, -O3.

-falign-jumps
-falign-jumps=n
Align branch targets to a power-of-two boundary, for branch targets where the targets can only be reached by jumping, skipping up to n bytes like -falign-functions. In this case, no dummy operations need be executed.

-fno-align-jumps and -falign-jumps=1 are equivalent and mean that loops will not be aligned.

If n is not specified or is zero, use a machine-dependent default.

Enabled at levels -O2, -O3.

-frename-registers
Attempt to avoid false dependencies in scheduled code by making use of registers left over after register allocation. This optimization will most benefit processors with lots of registers. It can, however, make debugging impossible, since variables will no longer stay in a “home register”.

Enabled at levels -O3.

-fno-cprop-registers
After register allocation and post-register allocation instruction splitting, we perform a copy-propagation pass to try to reduce scheduling dependencies and occasionally eliminate the copy.

Disabled at levels -O, -O2, -O3, -Os.

The following options control compiler behavior regarding floating point arithmetic. These options trade off between speed and correctness. All must be specifically enabled.

-ffloat-store
Do not store floating point variables in registers, and inhibit other options that might change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep more precision than a double is supposed to have. Similarly for the x86 architecture. For most programs, the excess precision does only good, but a few programs rely on the precise definition of IEEE floating point. Use -ffloat-store for such programs, after modifying them to store all pertinent intermediate computations into variables.

-ffast-math
Sets -fno-math-errno, -funsafe-math-optimizations,
-fno-trapping-math, -ffinite-math-only and
-fno-signaling-nans.

This option causes the preprocessor macro __FAST_MATH__ to be defined.

This option should never be turned on by any -O option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications for math functions.

-fno-math-errno
Do not set ERRNO after calling math functions that are executed with a single instruction, e.g., sqrt. A program that relies on IEEE exceptions for math error handling may want to use this flag for speed while maintaining IEEE arithmetic compatibility.

This option should never be turned on by any -O option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications for math functions.

The default is -fmath-errno.

-funsafe-math-optimizations
Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards. When used at link-time, it may include libraries or startup files that change the default FPU control word or other similar optimizations.

This option should never be turned on by any -O option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications for math functions.

The default is -fno-unsafe-math-optimizations.

-ffinite-math-only
Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs or +-Infs.

This option should never be turned on by any -O option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications.

The default is -fno-finite-math-only.

-fno-trapping-math
Compile code assuming that floating-point operations cannot generate user-visible traps. These traps include division by zero, overflow, underflow, inexact result and invalid operation. This option implies -fno-signaling-nans. Setting this option may allow faster code if one relies on “non-stop” IEEE arithmetic, for example.

This option should never be turned on by any -O option since it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications for math functions.

The default is -ftrapping-math.

-fsignaling-nans
Compile code assuming that IEEE signaling NaNs may generate user-visible traps during floating-point operations. Setting this option disables optimizations that may change the number of exceptions visible with signaling NaNs. This option implies -ftrapping-math.

This option causes the preprocessor macro __SUPPORT_SNAN__ to be defined.

The default is -fno-signaling-nans.

This option is experimental and does not currently guarantee to disable all GCC optimizations that affect signaling NaN behavior.

-fsingle-precision-constant
Treat floating point constant as single precision constant instead of implicitly converting it to double precision constant.

The following options control optimizations that may improve performance, but are not enabled by any -O options. This section includes experimental options that may produce broken code.

-fbranch-probabilities
After running a program compiled with -fprofile-arcs (see Options for Debugging Your Program or gcc), you can compile it a second time using -fbranch-probabilities, to improve optimizations based on the number of times each branch was taken. When the program compiled with -fprofile-arcs exits it saves arc execution counts to a file called sourcename.da for each source file The information in this data file is very dependent on the structure of the generated code, so you must use the same source code and the same optimization options for both compilations.

With -fbranch-probabilities, GCC puts a REG_BR_PROB note on each JUMP_INSN and CALL_INSN. These can be used to improve optimization. Currently, they are only used in one place: in reorg.c, instead of guessing which path a branch is mostly to take, the REG_BR_PROB values are used to exactly determine which path is taken more often.

-fnew-ra
Use a graph coloring register allocator. Currently this option is meant only for testing. Users should not specify this option, since it is not yet ready for production use.
-ftracer
Perform tail duplication to enlarge superblock size. This transformation simplifies the control flow of the function allowing other optimizations to do better job.
-funroll-loops
Unroll loops whose number of iterations can be determined at compile time or upon entry to the loop. -funroll-loops implies both -fstrength-reduce and -frerun-cse-after-loop. This option makes code larger, and may or may not make it run faster.
-funroll-all-loops
Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more slowly. -funroll-all-loops implies the same options as -funroll-loops,
-fprefetch-loop-arrays
If supported by the target machine, generate instructions to prefetch memory to improve the performance of loops that access large arrays.

Disabled at level -Os.

-ffunction-sections
-fdata-sections
Place each function or data item into its own section in the output file if the target supports arbitrary sections. The name of the function or the name of the data item determines the section's name in the output file.

Use these options on systems where the linker can perform optimizations to improve locality of reference in the instruction space. Most systems using the ELF object format and SPARC processors running Solaris 2 have linkers with such optimizations. AIX may have these optimizations in the future.

Only use these options when there are significant benefits from doing so. When you specify these options, the assembler and linker will create larger object and executable files and will also be slower. You will not be able to use gprof on all systems if you specify this option and you may have problems with debugging if you specify both this option and -g.

-fssa
Perform optimizations in static single assignment form. Each function's flow graph is translated into SSA form, optimizations are performed, and the flow graph is translated back from SSA form. Users should not specify this option, since it is not yet ready for production use.
-fssa-ccp
Perform Sparse Conditional Constant Propagation in SSA form. Requires -fssa. Like -fssa, this is an experimental feature.
-fssa-dce
Perform aggressive dead-code elimination in SSA form. Requires -fssa. Like -fssa, this is an experimental feature.
--param name=value
In some places, GCC uses various constants to control the amount of optimization that is done. For example, GCC will not inline functions that contain more that a certain number of instructions. You can control some of these constants on the command-line using the --param option.

The names of specific parameters, and the meaning of the values, are tied to the internals of the compiler, and are subject to change without notice in future releases.

In each case, the value is an integer. The allowable choices for name are given in the following table:

max-crossjump-edges
The maximum number of incoming edges to consider for crossjumping. The algorithm used by -fcrossjumping is O(N^2) in the number of edges incoming to each block. Increasing values mean more aggressive optimization, making the compile time increase with probably small improvement in executable size.
max-delay-slot-insn-search
The maximum number of instructions to consider when looking for an instruction to fill a delay slot. If more than this arbitrary number of instructions is searched, the time savings from filling the delay slot will be minimal so stop searching. Increasing values mean more aggressive optimization, making the compile time increase with probably small improvement in executable run time.
max-delay-slot-live-search
When trying to fill delay slots, the maximum number of instructions to consider when searching for a block with valid live register information. Increasing this arbitrarily chosen value means more aggressive optimization, increasing the compile time. This parameter should be removed when the delay slot code is rewritten to maintain the control-flow graph.
max-gcse-memory
The approximate maximum amount of memory that will be allocated in order to perform the global common subexpression elimination optimization. If more memory than specified is required, the optimization will not be done.
max-gcse-passes
The maximum number of passes of GCSE to run.
max-pending-list-length
The maximum number of pending dependencies scheduling will allow before flushing the current state and starting over. Large functions with few branches or calls can create excessively large lists which needlessly consume memory and resources.
max-inline-insns-single
Several parameters control the tree inliner used in gcc. This number sets the maximum number of instructions (counted in gcc's internal representation) in a single function that the tree inliner will consider for inlining. This only affects functions declared inline and methods implemented in a class declaration (C++). The default value is 300.
max-inline-insns-auto
When you use -finline-functions (included in -O3), a lot of functions that would otherwise not be considered for inlining by the compiler will be investigated. To those functions, a different (more restrictive) limit compared to functions declared inline can be applied. The default value is 300.
max-inline-insns
The tree inliner does decrease the allowable size for single functions to be inlined after we already inlined the number of instructions given here by repeated inlining. This number should be a factor of two or more larger than the single function limit. Higher numbers result in better runtime performance, but incur higher compile-time resource (CPU time, memory) requirements and result in larger binaries. Very high values are not advisable, as too large binaries may adversely affect runtime performance. The default value is 600.
max-inline-slope
After exceeding the maximum number of inlined instructions by repeated inlining, a linear function is used to decrease the allowable size for single functions. The slope of that function is the negative reciprocal of the number specified here. The default value is 32.
min-inline-insns
The repeated inlining is throttled more and more by the linear function after exceeding the limit. To avoid too much throttling, a minimum for this function is specified here to allow repeated inlining for very small functions even when a lot of repeated inlining already has been done. The default value is 130.
max-inline-insns-rtl
For languages that use the RTL inliner (this happens at a later stage than tree inlining), you can set the maximum allowable size (counted in RTL instructions) for the RTL inliner with this parameter. The default value is 600.
max-unrolled-insns
The maximum number of instructions that a loop should have if that loop is unrolled, and if the loop is unrolled, it determines how many times the loop code is unrolled.
hot-bb-count-fraction
Select fraction of the maximal count of repetitions of basic block in program given basic block needs to have to be considered hot.
hot-bb-frequency-fraction
Select fraction of the maximal frequency of executions of basic block in function given basic block needs to have to be considered hot
tracer-dynamic-coverage
tracer-dynamic-coverage-feedback
This value is used to limit superblock formation once the given percentage of executed instructions is covered. This limits unnecessary code size expansion.

The tracer-dynamic-coverage-feedback is used only when profile feedback is available. The real profiles (as opposed to statically estimated ones) are much less balanced allowing the threshold to be larger value.

tracer-max-code-growth
Stop tail duplication once code growth has reached given percentage. This is rather hokey argument, as most of the duplicates will be eliminated later in cross jumping, so it may be set to much higher values than is the desired code growth.
tracer-min-branch-ratio
Stop reverse growth when the reverse probability of best edge is less than this threshold (in percent).
tracer-min-branch-ratio
tracer-min-branch-ratio-feedback
Stop forward growth if the best edge do have probability lower than this threshold.

Similarly to tracer-dynamic-coverage two values are present, one for compilation for profile feedback and one for compilation without. The value for compilation with profile feedback needs to be more conservative (higher) in order to make tracer effective.

ggc-min-expand
GCC uses a garbage collector to manage its own memory allocation. This parameter specifies the minimum percentage by which the garbage collector's heap should be allowed to expand between collections. Tuning this may improve compilation speed; it has no effect on code generation.

The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when RAM >= 1GB. If getrlimit is available, the notion of "RAM" is the smallest of actual RAM, RLIMIT_RSS, RLIMIT_DATA and RLIMIT_AS. If GCC is not able to calculate RAM on a particular platform, the lower bound of 30% is used. Setting this parameter and ggc-min-heapsize to zero causes a full collection to occur at every opportunity. This is extremely slow, but can be useful for debugging.

ggc-min-heapsize
Minimum size of the garbage collector's heap before it begins bothering to collect garbage. The first collection occurs after the heap expands by ggc-min-expand% beyond ggc-min-heapsize. Again, tuning this may improve compilation speed, and has no effect on code generation.

The default is RAM/8, with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If getrlimit is available, the notion of "RAM" is the smallest of actual RAM, RLIMIT_RSS, RLIMIT_DATA and RLIMIT_AS. If GCC is not able to calculate RAM on a particular platform, the lower bound is used. Setting this parameter very large effectively disables garbage collection. Setting this parameter and ggc-min-expand to zero causes a full collection to occur at every opportunity.


Next: , Previous: Optimize Options, Up: Invoking GCC

3.11 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual compilation.

If you use the -E option, nothing is done except preprocessing. Some of these options make sense only together with -E because they cause the preprocessor output to be unsuitable for actual compilation.

You can use -Wp,option to bypass the compiler driver and pass option directly through to the preprocessor. If option contains commas, it is split into multiple options at the commas. However, many options are modified, translated or interpreted by the compiler driver before being passed to the preprocessor, and -Wp forcibly bypasses this phase. The preprocessor's direct interface is undocumented and subject to change, so whenever possible you should avoid using -Wp and let the driver handle the options instead.

-D name
Predefine name as a macro, with definition 1.
-D name=definition
Predefine name as a macro, with definition definition. There are no restrictions on the contents of definition, but if you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect characters such as spaces that have a meaning in the shell syntax.

If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, so you will need to quote the option. With sh and csh, -D'name(args...)=definition' works.

-D and -U options are processed in the order they are given on the command line. All -imacros file and -include file options are processed after all -D and -U options.

-U name
Cancel any previous definition of name, either built in or provided with a -D option.
-undef
Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined.
-I dir
Add the directory dir to the list of directories to be searched for header files. Directories named by -I are searched before the standard system include directories. If the directory dir is a standard system include directory, the option is ignored to ensure that the default search order for system directories and the special treatment of system headers are not defeated .
-o file
Write output to file. This is the same as specifying file as the second non-option argument to cpp. gcc has a different interpretation of a second non-option argument, so you must use -o to specify the output file.
-Wall
Turns on all optional warnings which are desirable for normal code. At present this is -Wcomment and -Wtrigraphs. Note that many of the preprocessor's warnings are on by default and have no options to control them.
-Wcomment
-Wcomments
Warn whenever a comment-start sequence /* appears in a /* comment, or whenever a backslash-newline appears in a // comment. (Both forms have the same effect.)
-Wtrigraphs
Warn if any trigraphs are encountered. This option used to take effect only if -trigraphs was also specified, but now works independently. Warnings are not given for trigraphs within comments, as they do not affect the meaning of the program.
-Wtraditional
Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided.
-Wimport
Warn the first time #import is used.
-Wundef
Warn whenever an identifier which is not a macro is encountered in an #if directive, outside of defined. Such identifiers are replaced with zero.
-Wunused-macros
Warn about macros defined in the main file that are unused. A macro is used if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been used at the time it is redefined or undefined.

Built-in macros, macros defined on the command line, and macros defined in include files are not warned about.

Note: If a macro is actually used, but only used in skipped conditional blocks, then CPP will report it as unused. To avoid the warning in such a case, you might improve the scope of the macro's definition by, for example, moving it into the first skipped block. Alternatively, you could provide a dummy use with something like:

          #if defined the_macro_causing_the_warning
          #endif
     

-Wendif-labels
Warn whenever an #else or an #endif are followed by text. This usually happens in code of the form
          #if FOO
          ...
          #else FOO
          ...
          #endif FOO
     

The second and third FOO should be in comments, but often are not in older programs. This warning is on by default.

-Werror
Make all warnings into hard errors. Source code which triggers warnings will be rejected.
-Wsystem-headers
Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them.
-w
Suppress all warnings, including those which GNU CPP issues by default.
-pedantic
Issue all the mandatory diagnostics listed in the C standard. Some of them are left out by default, since they trigger frequently on harmless code.
-pedantic-errors
Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that GCC issues without -pedantic but treats as warnings.
-M
Instead of outputting the result of preprocessing, output a rule suitable for make describing the dependencies of the main source file. The preprocessor outputs one make rule containing the object file name for that source file, a colon, and the names of all the included files, including those coming from -include or -imacros command line options.

Unless specified explicitly (with -MT or -MQ), the object file name consists of the basename of the source file with any suffix replaced with object file suffix. If there are many included files then the rule is split into several lines using \-newline. The rule has no commands.

This option does not suppress the preprocessor's debug output, such as -dM. To avoid mixing such debug output with the dependency rules you should explicitly specify the dependency output file with -MF, or use an environment variable like DEPENDENCIES_OUTPUT (see Environment Variables). Debug output will still be sent to the regular output stream as normal.

Passing -M to the driver implies -E, and suppresses warnings with an implicit -w.

-MM
Like -M but do not mention header files that are found in system header directories, nor header files that are included, directly or indirectly, from such a header.

This implies that the choice of angle brackets or double quotes in an #include directive does not in itself determine whether that header will appear in -MM dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier.

-MF file
When used with -M or -MM, specifies a file to write the dependencies to. If no -MF switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output.

When used with the driver options -MD or -MMD, -MF overrides the default dependency output file.

-MG
In conjunction with an option such as -M requesting dependency generation, -MG assumes missing header files are generated files and adds them to the dependency list without raising an error. The dependency filename is taken directly from the #include directive without prepending any path. -MG also suppresses preprocessed output, as a missing header file renders this useless.

This feature is used in automatic updating of makefiles.

-MP
This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These dummy rules work around errors make gives if you remove header files without updating the Makefile to match.

This is typical output:

          test.o: test.c test.h
          
          test.h:
     

-MT target
Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, including any path, deletes any file suffix such as .c, and appends the platform's usual object suffix. The result is the target.

An -MT option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a single argument to -MT, or use multiple -MT options.

For example, -MT '$(objpfx)foo.o' might give

          $(objpfx)foo.o: foo.c
     

-MQ target
Same as -MT, but it quotes any characters which are special to Make. -MQ '$(objpfx)foo.o' gives
          $$(objpfx)foo.o: foo.c
     

The default target is automatically quoted, as if it were given with -MQ.

-MD
-MD is equivalent to -M -MF file, except that -E is not implied. The driver determines file based on whether an -o option is given. If it is, the driver uses its argument but with a suffix of .d, otherwise it take the basename of the input file and applies a .d suffix.

If -MD is used in conjunction with -E, any -o switch is understood to specify the dependency output file (but see -MF), but if used without -E, each -o is understood to specify a target object file.

Since -E is not implied, -MD can be used to generate a dependency output file as a side-effect of the compilation process.

-MMD
Like -MD except mention only user header files, not system -header files.
-x c
-x c++
-x objective-c
-x assembler-with-cpp
Specify the source language: C, C++, Objective-C, or assembly. This has nothing to do with standards conformance or extensions; it merely selects which base syntax to expect. If you give none of these options, cpp will deduce the language from the extension of the source file: .c, .cc, .m, or .S. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode.

Note: Previous versions of cpp accepted a -lang option which selected both the language and the standards conformance level. This option has been removed, because it conflicts with the -l option.

-std=standard
-ansi
Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future.

standard may be one of:

iso9899:1990
c89
The ISO C standard from 1990. c89 is the customary shorthand for this version of the standard.

The -ansi option is equivalent to -std=c89.

iso9899:199409
The 1990 C standard, as amended in 1994.
iso9899:1999
c99
iso9899:199x
c9x
The revised ISO C standard, published in December 1999. Before publication, this was known as C9X.
gnu89
The 1990 C standard plus GNU extensions. This is the default.
gnu99
gnu9x
The 1999 C standard plus GNU extensions.
c++98
The 1998 ISO C++ standard plus amendments.
gnu++98
The same as -std=c++98 plus GNU extensions. This is the default for C++ code.

-I-
Split the include path. Any directories specified with -I options before -I- are searched only for headers requested with #include "file"; they are not searched for #include <file>. If additional directories are specified with -I options after the -I-, those directories are searched for all #include directives.

In addition, -I- inhibits the use of the directory of the current file directory as the first search directory for #include "file".

-nostdinc
Do not search the standard system directories for header files. Only the directories you have specified with -I options (and the directory of the current file, if appropriate) are searched.
-nostdinc++
Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.)
-include file
Process file as if #include "file" appeared as the first line of the primary source file. However, the first directory searched for file is the preprocessor's working directory instead of the directory containing the main source file. If not found there, it is searched for in the remainder of the #include "..." search chain as normal.

If multiple -include options are given, the files are included in the order they appear on the command line.

-imacros file
Exactly like -include, except that any output produced by scanning file is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations.

All files specified by -imacros are processed before all files specified by -include.

-idirafter dir
Search dir for header files, but do it after all directories specified with -I and the standard system directories have been exhausted. dir is treated as a system include directory.
-iprefix prefix
Specify prefix as the prefix for subsequent -iwithprefix options. If the prefix represents a directory, you should include the final /.
-iwithprefix dir
-iwithprefixbefore dir
Append dir to the prefix specified previously with -iprefix, and add the resulting directory to the include search path. -iwithprefixbefore puts it in the same place -I would; -iwithprefix puts it where -idirafter would.

Use of these options is discouraged.

-isystem dir
Search dir for header files, after all directories specified by -I but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories.
-fpreprocessed
Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes comments, so that you can pass a file preprocessed with -C to the compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends.

-fpreprocessed is implicit if the input file has one of the extensions .i, .ii or .mi. These are the extensions that GCC uses for preprocessed files created by -save-temps.

-ftabstop=width
Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8.
-fno-show-column
Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not understand the column numbers, such as dejagnu.
-A predicate=answer
Make an assertion with the predicate predicate and answer answer. This form is preferred to the older form -A predicate(answer), which is still supported, because it does not use shell special characters.
-A -predicate=answer
Cancel an assertion with the predicate predicate and answer answer.
-dCHARS
CHARS is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted by the compiler proper, or reserved for future versions of GCC, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined.
M
Instead of the normal output, generate a list of #define directives for all the macros defined during the execution of the preprocessor, including predefined macros. This gives you a way of finding out what is predefined in your version of the preprocessor. Assuming you have no file foo.h, the command
               touch foo.h; cpp -dM foo.h
          

will show all the predefined macros.

D
Like M except in two respects: it does not include the predefined macros, and it outputs both the #define directives and the result of preprocessing. Both kinds of output go to the standard output file.
N
Like D, but emit only the macro names, not their expansions.
I
Output #include directives in addition to the result of preprocessing.

-P
Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers.
-C
Do not discard comments. All comments are passed through to the output file, except for comments in processed directives, which are deleted along with the directive.

You should be prepared for side effects when using -C; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no longer a #.

-CC
Do not discard comments, including during macro expansion. This is like -C, except that comments contained within macros are also passed through to the output file where the macro is expanded.

In addition to the side-effects of the -C option, the -CC option causes all C++-style comments inside a macro to be converted to C-style comments. This is to prevent later use of that macro from inadvertently commenting out the remainder of the source line.

The -CC option is generally used to support lint comments.

-traditional-cpp
Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors.
-trigraphs
Process trigraph sequences. These are three-character sequences, all starting with ??, that are defined by ISO C to stand for single characters. For example, ??/ stands for \, so '??/n' is a character constant for a newline. By default, GCC ignores trigraphs, but in standard-conforming modes it converts them. See the -std and -ansi options.

The nine trigraphs and their replacements are

          Trigraph:       ??(  ??)  ??<  ??>  ??=  ??/  ??'  ??!  ??-
          Replacement:      [    ]    {    }    #    \    ^    |    ~
     

-remap
Enable special code to work around file systems which only permit very short file names, such as MS-DOS.
--help
--target-help
Print text describing all the command line options instead of preprocessing anything.
-v
Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path.
-H
Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the #include stack it is.
-version
--version
Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately.


Next: , Previous: Preprocessor Options, Up: Invoking GCC

3.12 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains commas, it is split into multiple options at the commas.


Next: , Previous: Assembler Options, Up: Invoking GCC

3.13 Options for Linking

These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is not doing a link step.

object-file-name
A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the linker.
-c
-S
-E
If any of these options is used, then the linker is not run, and object file names should not be used as arguments. See Overall Options.


-llibrary
-l library
Search the library named library when linking. (The second alternative with the library as a separate argument is only for POSIX compliance and is not recommended.)

It makes a difference where in the command you write this option; the linker searches and processes libraries and object files in the order they are specified. Thus, foo.o -lz bar.o searches library z after file foo.o but before bar.o. If bar.o refers to functions in z, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a file named liblibrary.a. The linker then uses this file as if it had been specified precisely by name.

The directories searched include several standard system directories plus any that you specify with -L.

Normally the files found this way are library files—archive files whose members are object files. The linker handles an archive file by scanning through it for members which define symbols that have so far been referenced but not defined. But if the file that is found is an ordinary object file, it is linked in the usual fashion. The only difference between using an -l option and specifying a file name is that -l surrounds library with lib and .a and searches several directories.

-lobjc
You need this special case of the -l option in order to link an Objective-C program.
-nostartfiles
Do not use the standard system startup files when linking. The standard system libraries are used normally, unless -nostdlib or -nodefaultlibs is used.
-nodefaultlibs
Do not use the standard system libraries when linking. Only the libraries you specify will be passed to the linker. The standard startup files are used normally, unless -nostartfiles is used. The compiler may generate calls to memcmp, memset, and memcpy for System V (and ISO C) environments or to bcopy and bzero for BSD environments. These entries are usually resolved by entries in libc. These entry points should be supplied through some other mechanism when this option is specified.
-nostdlib
Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify will be passed to the linker. The compiler may generate calls to memcmp, memset, and memcpy for System V (and ISO C) environments or to bcopy and bzero for BSD environments. These entries are usually resolved by entries in libc. These entry points should be supplied through some other mechanism when this option is specified.

One of the standard libraries bypassed by -nostdlib and -nodefaultlibs is libgcc.a, a library of internal subroutines that GCC uses to overcome shortcomings of particular machines, or special needs for some languages. (See Interfacing to GCC Output (GNU Compiler Collection (GCC) Internals), for more discussion of libgcc.a.) In most cases, you need libgcc.a even when you want to avoid other standard libraries. In other words, when you specify -nostdlib or -nodefaultlibs you should usually specify -lgcc as well. This ensures that you have no unresolved references to internal GCC library subroutines. (For example, __main, used to ensure C++ constructors will be called; see collect2 (GNU Compiler Collection (GCC) Internals).)

-s
Remove all symbol table and relocation information from the executable.
-static
On systems that support dynamic linking, this prevents linking with the shared libraries. On other systems, this option has no effect.
-shared
Produce a shared object which can then be linked with other objects to form an executable. Not all systems support this option. For predictable results, you must also specify the same set of options that were used to generate code (-fpic, -fPIC, or model suboptions) when you specify this option.1
-shared-libgcc
-static-libgcc
On systems that provide libgcc as a shared library, these options force the use of either the shared or static version respectively. If no shared version of libgcc was built when the compiler was configured, these options have no effect.

There are several situations in which an application should use the shared libgcc instead of the static version. The most common of these is when the application wishes to throw and catch exceptions across different shared libraries. In that case, each of the libraries as well as the application itself should use the shared libgcc.

Therefore, the G++ and GCJ drivers automatically add -shared-libgcc whenever you build a shared library or a main executable, because C++ and Java programs typically use exceptions, so this is the right thing to do.

If, instead, you use the GCC driver to create shared libraries, you may find that they will not always be linked with the shared libgcc. If GCC finds, at its configuration time, that you have a GNU linker that does not support option --eh-frame-hdr, it will link the shared version of libgcc into shared libraries by default. Otherwise, it will take advantage of the linker and optimize away the linking with the shared version of libgcc, linking with the static version of libgcc by default. This allows exceptions to propagate through such shared libraries, without incurring relocation costs at library load time.

However, if a library or main executable is supposed to throw or catch exceptions, you must link it using the G++ or GCJ driver, as appropriate for the languages used in the program, or using the option -shared-libgcc, such that it is linked with the shared libgcc.

-symbolic
Bind references to global symbols when building a shared object. Warn about any unresolved references (unless overridden by the link editor option -Xlinker -z -Xlinker defs). Only a few systems support this option.
-Xlinker option
Pass option as an option to the linker. You can use this to supply system-specific linker options which GCC does not know how to recognize.

If you want to pass an option that takes an argument, you must use -Xlinker twice, once for the option and once for the argument. For example, to pass -assert definitions, you must write -Xlinker -assert -Xlinker definitions. It does not work to write -Xlinker "-assert definitions", because this passes the entire string as a single argument, which is not what the linker expects.

-Wl,option
Pass option as an option to the linker. If option contains commas, it is split into multiple options at the commas.
-u symbol
Pretend the symbol symbol is undefined, to force linking of library modules to define it. You can use -u multiple times with different symbols to force loading of additional library modules.


Next: , Previous: Link Options, Up: Invoking GCC

3.14 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the compiler:

-Idir
Add the directory dir to the head of the list of directories to be searched for header files. This can be used to override a system header file, substituting your own version, since these directories are searched before the system header file directories. However, you should not use this option to add directories that contain vendor-supplied system header files (use -isystem for that). If you use more than one -I option, the directories are scanned in left-to-right order; the standard system directories come after.

If a standard system include directory, or a directory specified with -isystem, is also specified with -I, the -I option will be ignored. The directory will still be searched but as a system directory at its normal position in the system include chain. This is to ensure that GCC's procedure to fix buggy system headers and the ordering for the include_next directive are not inadvertently changed. If you really need to change the search order for system directories, use the -nostdinc and/or -isystem options.

-I-
Any directories you specify with -I options before the -I- option are searched only for the case of #include "file"; they are not searched for #include <file>.

If additional directories are specified with -I options after the -I-, these directories are searched for all #include directives. (Ordinarily all -I directories are used this way.)

In addition, the -I- option inhibits the use of the current directory (where the current input file came from) as the first search directory for #include "file". There is no way to override this effect of -I-. With -I. you can specify searching the directory which was current when the compiler was invoked. That is not exactly the same as what the preprocessor does by default, but it is often satisfactory.

-I- does not inhibit the use of the standard system directories for header files. Thus, -I- and -nostdinc are independent.

-Ldir
Add directory dir to the list of directories to be searched for -l.
-Bprefix
This option specifies where to find the executables, libraries, include files, and data files of the compiler itself.

The compiler driver program runs one or more of the subprograms cpp, cc1, as and ld. It tries prefix as a prefix for each program it tries to run, both with and without machine/version/ (see Target Options).

For each subprogram to be run, the compiler driver first tries the -B prefix, if any. If that name is not found, or if -B was not specified, the driver tries two standard prefixes, which are /usr/lib/gcc/ and /usr/local/lib/gcc-lib/. If neither of those results in a file name that is found, the unmodified program name is searched for using the directories specified in your PATH environment variable.

The compiler will check to see if the path provided by the -B refers to a directory, and if necessary it will add a directory separator character at the end of the path.

-B prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these options into -L options for the linker. They also apply to includes files in the preprocessor, because the compiler translates these options into -isystem options for the preprocessor. In this case, the compiler appends include to the prefix.

The run-time support file libgcc.a can also be searched for using the -B prefix, if needed. If it is not found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the -B prefix is to use the environment variable GCC_EXEC_PREFIX. See Environment Variables.

As a special kludge, if the path provided by -B is [dir/]stageN/, where N is a number in the range 0 to 9, then it will be replaced by [dir/]include. This is to help with boot-strapping the compiler.

-specs=file
Process file after the compiler reads in the standard specs file, in order to override the defaults that the gcc driver program uses when determining what switches to pass to cc1, cc1plus, as, ld, etc. More than one -specs=file can be specified on the command line, and they are processed in order, from left to right.


Next: , Previous: Directory Options, Up: Invoking GCC

3.15 Specifying subprocesses and the switches to pass to them

gcc is a driver program. It performs its job by invoking a sequence of other programs to do the work of compiling, assembling and linking. GCC interprets its command-line parameters and uses these to deduce which programs it should invoke, and which command-line options it ought to place on their command lines. This behavior is controlled by spec strings. In most cases there is one spec string for each program that GCC can invoke, but a few programs have multiple spec strings to control their behavior. The spec strings built into GCC can be overridden by using the -specs= command-line switch to specify a spec file.

Spec files are plaintext files that are used to construct spec strings. They consist of a sequence of directives separated by blank lines. The type of directive is determined by the first non-whitespace character on the line and it can be one of the following:

%command
Issues a command to the spec file processor. The commands that can appear here are:
%include <file>
Search for file and insert its text at the current point in the specs file.
%include_noerr <file>
Just like %include, but do not generate an error message if the include file cannot be found.
%rename old_name new_name
Rename the spec string old_name to new_name.

*[spec_name]:
This tells the compiler to create, override or delete the named spec string. All lines after this directive up to the next directive or blank line are considered to be the text for the spec string. If this results in an empty string then the spec will be deleted. (Or, if the spec did not exist, then nothing will happened.) Otherwise, if the spec does not currently exist a new spec will be created. If the spec does exist then its contents will be overridden by the text of this directive, unless the first character of that text is the + character, in which case the text will be appended to the spec.
[suffix]:
Creates a new [suffix] spec pair. All lines after this directive and up to the next directive or blank line are considered to make up the spec string for the indicated suffix. When the compiler encounters an input file with the named suffix, it will processes the spec string in order to work out how to compile that file. For example:
          .ZZ:
          z-compile -input %i
     

This says that any input file whose name ends in .ZZ should be passed to the program z-compile, which should be invoked with the command-line switch -input and with the result of performing the %i substitution. (See below.)

As an alternative to providing a spec string, the text that follows a suffix directive can be one of the following:

@language
This says that the suffix is an alias for a known language. This is similar to using the -x command-line switch to GCC to specify a language explicitly. For example:
               .ZZ:
               @c++
          

Says that .ZZ files are, in fact, C++ source files.

#name
This causes an error messages saying:
               name compiler not installed on this system.
          

GCC already has an extensive list of suffixes built into it. This directive will add an entry to the end of the list of suffixes, but since the list is searched from the end backwards, it is effectively possible to override earlier entries using this technique.

GCC has the following spec strings built into it. Spec files can override these strings or create their own. Note that individual targets can also add their own spec strings to this list.

     asm          Options to pass to the assembler
     asm_final    Options to pass to the assembler post-processor
     cpp          Options to pass to the C preprocessor
     cc1          Options to pass to the C compiler
     cc1plus      Options to pass to the C++ compiler
     endfile      Object files to include at the end of the link
     link         Options to pass to the linker
     lib          Libraries to include on the command line to the linker
     libgcc       Decides which GCC support library to pass to the linker
     linker       Sets the name of the linker
     predefines   Defines to be passed to the C preprocessor
     signed_char  Defines to pass to CPP to say whether char is signed
                  by default
     startfile    Object files to include at the start of the link

Here is a small example of a spec file:

     %rename lib                 old_lib
     
     *lib:
     --start-group -lgcc -lc -leval1 --end-group %(old_lib)

This example renames the spec called lib to old_lib and then overrides the previous definition of lib with a new one. The new definition adds in some extra command-line options before including the text of the old definition.

Spec strings are a list of command-line options to be passed to their corresponding program. In addition, the spec strings can contain %-prefixed sequences to substitute variable text or to conditionally insert text into the command line. Using these constructs it is possible to generate quite complex command lines.

Here is a table of all defined %-sequences for spec strings. Note that spaces are not generated automatically around the results of expanding these sequences. Therefore you can concatenate them together or combine them with constant text in a single argument.

%%
Substitute one % into the program name or argument.
%i
Substitute the name of the input file being processed.
%b
Substitute the basename of the input file being processed. This is the substring up to (and not including) the last period and not including the directory.
%B
This is the same as %b, but include the file suffix (text after the last period).
%d
Marks the argument containing or following the %d as a temporary file name, so that that file will be deleted if GCC exits successfully. Unlike %g, this contributes no text to the argument.
%gsuffix
Substitute a file name that has suffix suffix and is chosen once per compilation, and mark the argument in the same way as %d. To reduce exposure to denial-of-service attacks, the file name is now chosen in a way that is hard to predict even when previously chosen file names are known. For example, %g.s ... %g.o ... %g.s might turn into ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s. suffix matches the regexp [.A-Za-z]* or the special string %O, which is treated exactly as if %O had been preprocessed. Previously, %g was simply substituted with a file name chosen once per compilation, without regard to any appended suffix (which was therefore treated just like ordinary text), making such attacks more likely to succeed.
%usuffix
Like %g, but generates a new temporary file name even if %usuffix was already seen.
%Usuffix
Substitutes the last file name generated with %usuffix, generating a new one if there is no such last file name. In the absence of any %usuffix, this is just like %gsuffix, except they don't share the same suffix space, so %g.s ... %U.s ... %g.s ... %U.s would involve the generation of two distinct file names, one for each %g.s and another for each %U.s. Previously, %U was simply substituted with a file name chosen for the previous %u, without regard to any appended suffix.
%jsuffix
Substitutes the name of the HOST_BIT_BUCKET, if any, and if it is writable, and if save-temps is off; otherwise, substitute the name of a temporary file, just like %u. This temporary file is not meant for communication between processes, but rather as a junk disposal mechanism.
%.SUFFIX
Substitutes .SUFFIX for the suffixes of a matched switch's args when it is subsequently output with %*. SUFFIX is terminated by the next space or %.
%w
Marks the argument containing or following the %w as the designated output file of this compilation. This puts the argument into the sequence of arguments that %o will substitute later.
%o
Substitutes the names of all the output files, with spaces automatically placed around them. You should write spaces around the %o as well or the results are undefined. %o is for use in the specs for running the linker. Input files whose names have no recognized suffix are not compiled at all, but they are included among the output files, so they will be linked.
%O
Substitutes the suffix for object files. Note that this is handled specially when it immediately follows %g, %u, or %U, because of the need for those to form complete file names. The handling is such that %O is treated exactly as if it had already been substituted, except that %g, %u, and %U do not currently support additional suffix characters following %O as they would following, for example, .o.
%p
Substitutes the standard macro predefinitions for the current target machine. Use this when running cpp.
%P
Like %p, but puts __ before and after the name of each predefined macro, except for macros that start with __ or with _L, where L is an uppercase letter. This is for ISO C.
%I
Substitute any of -iprefix (made from GCC_EXEC_PREFIX), -isysroot (made from TARGET_SYSTEM_ROOT), and -isystem (made from COMPILER_PATH and -B options) as necessary.
%s
Current argument is the name of a library or startup file of some sort. Search for that file in a standard list of directories and substitute the full name found.
%estr
Print str as an error message. str is terminated by a newline. Use this when inconsistent options are detected.
%|
Output - if the input for the current command is coming from a pipe.
%(name)
Substitute the contents of spec string name at this point.
%[name]
Like %(...) but put __ around -D arguments.
%x{option}
Accumulate an option for %X.
%X
Output the accumulated linker options specified by -Wl or a %x spec string.
%Y
Output the accumulated assembler options specified by -Wa.
%Z
Output the accumulated preprocessor options specified by -Wp.
%v1
Substitute the major version number of GCC. (For version 2.9.5, this is 2.)
%v2
Substitute the minor version number of GCC. (For version 2.9.5, this is 9.)
%v3
Substitute the patch level number of GCC. (For version 2.9.5, this is 5.)
%a
Process the asm spec. This is used to compute the switches to be passed to the assembler.
%A
Process the asm_final spec. This is a spec string for passing switches to an assembler post-processor, if such a program is needed.
%l
Process the link spec. This is the spec for computing the command line passed to the linker. Typically it will make use of the %L %G %S %D and %E sequences.
%D
Dump out a -L option for each directory that GCC believes might contain startup files. If the target supports multilibs then the current multilib directory will be prepended to each of these paths.
%M
Output the multilib directory with directory separators replaced with _. If multilib directories are not set, or the multilib directory is . then this option emits nothing.
%L
Process the lib spec. This is a spec string for deciding which libraries should be included on the command line to the linker.
%G
Process the libgcc spec. This is a spec string for deciding which GCC support library should be included on the command line to the linker.
%S
Process the startfile spec. This is a spec for deciding which object files should be the first ones passed to the linker. Typically this might be a file named crt0.o.
%E
Process the endfile spec. This is a spec string that specifies the last object files that will be passed to the linker.
%C
Process the cpp spec. This is used to construct the arguments to be passed to the C preprocessor.
%c
Process the signed_char spec. This is intended to be used to tell cpp whether a char is signed. It typically has the definition:
          %{funsigned-char:-D__CHAR_UNSIGNED__}
     

%1
Process the cc1 spec. This is used to construct the options to be passed to the actual C compiler (cc1).
%2
Process the cc1plus spec. This is used to construct the options to be passed to the actual C++ compiler (cc1plus).
%*
Substitute the variable part of a matched option. See below. Note that each comma in the substituted string is replaced by a single space.
%:function(args)
Call the named function function, passing it args. args is first processed as a nested spec string, then split into an argument vector in the usual fashion. The function returns a string which is processed as if it had appeared literally as part of the current spec.

The following built-in spec functions are provided:

if-exists
The if-exists spec function takes one argument, an absolute pathname to a file. If the file exists, if-exists returns the pathname. Here is a small example of its usage:
               *startfile:
               crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
          

if-exists-else
The if-exists-else spec function is similar to the if-exists spec function, except that it takes two arguments. The first argument is an absolute pathname to a file. If the file exists, if-exists-else returns the pathname. If it does not exist, it returns the second argument. This way, if-exists-else can be used to select one file or another, based on the existence of the first. Here is a small example of its usage:
               *startfile:
               crt0%O%s %:if-exists(crti%O%s) \
               %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
          

%{S}
Substitutes the -S switch, if that switch was given to GCC. If that switch was not specified, this substitutes nothing. Note that the leading dash is omitted when specifying this option, and it is automatically inserted if the substitution is performed. Thus the spec string %{foo} would match the command-line option -foo and would output the command line option -foo.
%W{S}
Like %{S} but mark last argument supplied within as a file to be deleted on failure.
%{S*}
Substitutes all the switches specified to GCC whose names start with -S, but which also take an argument. This is used for switches like -o, -D, -I, etc. GCC considers -o foo as being one switch whose names starts with o. %{o*} would substitute this text, including the space. Thus two arguments would be generated.
%{^S*}
Like %{S*}, but don't put a blank between a switch and its argument. Thus %{^o*} would only generate one argument, not two.
%{S*&T*}
Like %{S*}, but preserve order of S and T options (the order of S and T in the spec is not significant). There can be any number of ampersand-separated variables; for each the wild card is optional. Useful for CPP as %{D*&U*&A*}.
%{<S}
Remove all occurrences of -S from the command line. Note—this command is position dependent. % commands in the spec string before this option will see -S, % commands in the spec string after this option will not.
%{S*:X}
Substitutes X if one or more switches whose names start with -S are specified to GCC. Note that the tail part of the -S option (i.e. the part matched by the *) will be substituted for each occurrence of %* within X.
%{S:X}
Substitutes X, but only if the -S switch was given to GCC.
%{!S:X}
Substitutes X, but only if the -S switch was not given to GCC.
%{|S:X}
Like %{S:X}, but if no S switch, substitute -.
%{|!S:X}
Like %{!S:X}, but if there is an S switch, substitute -.
%{.S:X}
Substitutes X, but only if processing a file with suffix S.
%{!.S:X}
Substitutes X, but only if not processing a file with suffix S.
%{S|P:X}
Substitutes X if either -S or -P was given to GCC. This may be combined with ! and . sequences as well, although they have a stronger binding than the |. For example a spec string like this:
          %{.c:-foo} %{!.c:-bar} %{.c|d:-baz} %{!.c|d:-boggle}
     

will output the following command-line options from the following input command-line options:

          fred.c        -foo -baz
          jim.d         -bar -boggle
          -d fred.c     -foo -baz -boggle
          -d jim.d      -bar -baz -boggle
     

The conditional text X in a %{S:X} or %{!S:X} construct may contain other nested % constructs or spaces, or even newlines. They are processed as usual, as described above.

The -O, -f, -m, and -W switches are handled specifically in these constructs. If another value of -O or the negated form of a -f, -m, or -W switch is found later in the command line, the earlier switch value is ignored, except with {S*} where S is just one letter, which passes all matching options.

The character | at the beginning of the predicate text is used to indicate that a command should be piped to the following command, but only if -pipe is specified.

It is built into GCC which switches take arguments and which do not. (You might think it would be useful to generalize this to allow each compiler's spec to say which switches take arguments. But this cannot be done in a consistent fashion. GCC cannot even decide which input files have been specified without knowing which switches take arguments, and it must know which input files to compile in order to tell which compilers to run).

GCC also knows implicitly that arguments starting in -l are to be treated as compiler output files, and passed to the linker in their proper position among the other output files.


Next: , Previous: Spec Files, Up: Invoking GCC

3.16 Specifying Target Machine and Compiler Version

The usual way to run GCC is to run the executable called gcc, or <machine>-gcc when cross-compiling, or <machine>-gcc-<version> to run a version other than the one that was installed last. Sometimes this is inconvenient, so GCC provides options that will switch to another cross-compiler or version.

-b machine
The argument machine specifies the target machine for compilation.

The value to use for machine is the same as was specified as the machine type when configuring GCC as a cross-compiler. For example, if a cross-compiler was configured with configure i386v, meaning to compile for an 80386 running System V, then you would specify -b i386v to run that cross compiler.

-V version
The argument version specifies which version of GCC to run. This is useful when multiple versions are installed. For example, version might be 2.0, meaning to run GCC version 2.0.

The -V and -b options work by running the <machine>-gcc-<version> executable, so there's no real reason to use them if you can just run that directly.


Next: , Previous: Target Options, Up: Invoking GCC

3.17 Hardware Models and Configurations

Earlier we discussed the standard option -b which chooses among different installed compilers for completely different target machines, such as VAX vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting with -m, to choose among various hardware models or configurations—for example, 68010 vs 68020, floating coprocessor or none. A single installed version of the compiler can compile for any model or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for compatibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description. The default for the options is also defined by that macro, which enables you to change the defaults.


Next: , Up: Submodel Options

3.17.1 M680x0 Options

These are the -m options defined for the 68000 series. The default values for these options depends on which style of 68000 was selected when the compiler was configured; the defaults for the most common choices are given below.

-m68000
-mc68000
Generate output for a 68000. This is the default when the compiler is configured for 68000-based systems.

Use this option for microcontrollers with a 68000 or EC000 core, including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.

-m68020
-mc68020
Generate output for a 68020. This is the default when the compiler is configured for 68020-based systems.
-m68881
Generate output containing 68881 instructions for floating point. This is the default for most 68020 systems unless --nfp was specified when the compiler was configured.
-m68030
Generate output for a 68030. This is the default when the compiler is configured for 68030-based systems.
-m68040
Generate output for a 68040. This is the default when the compiler is configured for 68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the 68040. Use this option if your 68040 does not have code to emulate those instructions.

-m68060
Generate output for a 68060. This is the default when the compiler is configured for 68060-based systems.

This option inhibits the use of 68020 and 68881/68882 instructions that have to be emulated by software on the 68060. Use this option if your 68060 does not have code to emulate those instructions.

-mcpu32
Generate output for a CPU32. This is the default when the compiler is configured for CPU32-based systems.

Use this option for microcontrollers with a CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360.

-m5200
Generate output for a 520X “coldfire” family cpu. This is the default when the compiler is configured for 520X-based systems.

Use this option for microcontroller with a 5200 core, including the MCF5202, MCF5203, MCF5204 and MCF5202.

-m68020-40
Generate output for a 68040, without using any of the new instructions. This results in code which can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The generated code does use the 68881 instructions that are emulated on the 68040.
-m68020-60
Generate output for a 68060, without using any of the new instructions. This results in code which can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The generated code does use the 68881 instructions that are emulated on the 68060.
-mfpa
Generate output containing Sun FPA instructions for floating point.
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all m68k targets. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation. The embedded targets m68k-*-aout and m68k-*-coff do provide software floating point support.
-mshort
Consider type int to be 16 bits wide, like short int.
-mnobitfield
Do not use the bit-field instructions. The -m68000, -mcpu32 and -m5200 options imply -mnobitfield.
-mbitfield
Do use the bit-field instructions. The -m68020 option implies -mbitfield. This is the default if you use a configuration designed for a 68020.
-mrtd
Use a different function-calling convention, in which functions that take a fixed number of arguments return with the rtd instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments (including printf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.

-malign-int
-mno-align-int
Control whether GCC aligns int, long, long long, float, double, and long double variables on a 32-bit boundary (-malign-int) or a 16-bit boundary (-mno-align-int). Aligning variables on 32-bit boundaries produces code that runs somewhat faster on processors with 32-bit busses at the expense of more memory.

Warning: if you use the -malign-int switch, GCC will align structures containing the above types differently than most published application binary interface specifications for the m68k.

-mpcrel
Use the pc-relative addressing mode of the 68000 directly, instead of using a global offset table. At present, this option implies -fpic, allowing at most a 16-bit offset for pc-relative addressing. -fPIC is not presently supported with -mpcrel, though this could be supported for 68020 and higher processors.
-mno-strict-align
-mstrict-align
Do not (do) assume that unaligned memory references will be handled by the system.


Next: , Previous: M680x0 Options, Up: Submodel Options

3.17.2 M68hc1x Options

These are the -m options defined for the 68hc11 and 68hc12 microcontrollers. The default values for these options depends on which style of microcontroller was selected when the compiler was configured; the defaults for the most common choices are given below.

-m6811
-m68hc11
Generate output for a 68HC11. This is the default when the compiler is configured for 68HC11-based systems.
-m6812
-m68hc12
Generate output for a 68HC12. This is the default when the compiler is configured for 68HC12-based systems.
-m68S12
-m68hcs12
Generate output for a 68HCS12.
-mauto-incdec
Enable the use of 68HC12 pre and post auto-increment and auto-decrement addressing modes.
-minmax
-nominmax
Enable the use of 68HC12 min and max instructions.
-mlong-calls
-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away, the compiler will use the call instruction to call a function and the rtc instruction for returning.
-mshort
Consider type int to be 16 bits wide, like short int.
-msoft-reg-count=count
Specify the number of pseudo-soft registers which are used for the code generation. The maximum number is 32. Using more pseudo-soft register may or may not result in better code depending on the program. The default is 4 for 68HC11 and 2 for 68HC12.


Next: , Previous: M68hc1x Options, Up: Submodel Options

3.17.3 VAX Options

These -m options are defined for the VAX:

-munix
Do not output certain jump instructions (aobleq and so on) that the Unix assembler for the VAX cannot handle across long ranges.
-mgnu
Do output those jump instructions, on the assumption that you will assemble with the GNU assembler.
-mg
Output code for g-format floating point numbers instead of d-format.


Next: , Previous: VAX Options, Up: Submodel Options

3.17.4 SPARC Options

These -m switches are supported on the SPARC:

-mno-app-regs
-mapp-regs
Specify -mapp-regs to generate output using the global registers 2 through 4, which the SPARC SVR4 ABI reserves for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some performance loss, specify -mno-app-regs. You should compile libraries and system software with this option.

-mfpu
-mhard-float
Generate output containing floating point instructions. This is the default.
-mno-fpu
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all SPARC targets. Normally the facilities of the machine's usual C compiler are used, but this cannot be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation. The embedded targets sparc-*-aout and sparclite-*-* do provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is only useful if you compile all of a program with this option. In particular, you need to compile libgcc.a, the library that comes with GCC, with -msoft-float in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating point instructions.
-msoft-quad-float
Generate output containing library calls for quad-word (long double) floating point instructions. The functions called are those specified in the SPARC ABI. This is the default.

As of this writing, there are no sparc implementations that have hardware support for the quad-word floating point instructions. They all invoke a trap handler for one of these instructions, and then the trap handler emulates the effect of the instruction. Because of the trap handler overhead, this is much slower than calling the ABI library routines. Thus the -msoft-quad-float option is the default.

-mno-flat
-mflat
With -mflat, the compiler does not generate save/restore instructions and will use a “flat” or single register window calling convention. This model uses %i7 as the frame pointer and is compatible with the normal register window model. Code from either may be intermixed. The local registers and the input registers (0–5) are still treated as “call saved” registers and will be saved on the stack as necessary.

With -mno-flat (the default), the compiler emits save/restore instructions (except for leaf functions) and is the normal mode of operation.

-mno-unaligned-doubles
-munaligned-doubles
Assume that doubles have 8 byte alignment. This is the default.

With -munaligned-doubles, GCC assumes that doubles have 8 byte alignment only if they are contained in another type, or if they have an absolute address. Otherwise, it assumes they have 4 byte alignment. Specifying this option avoids some rare compatibility problems with code generated by other compilers. It is not the default because it results in a performance loss, especially for floating point code.

-mno-faster-structs
-mfaster-structs
With -mfaster-structs, the compiler assumes that structures should have 8 byte alignment. This enables the use of pairs of ldd and std instructions for copies in structure assignment, in place of twice as many ld and st pairs. However, the use of this changed alignment directly violates the SPARC ABI. Thus, it's intended only for use on targets where the developer acknowledges that their resulting code will not be directly in line with the rules of the ABI.
-mimpure-text
-mimpure-text, used in addition to -shared, tells the compiler to not pass -z text to the linker when linking a shared object. Using this option, you can link position-dependent code into a shared object.

-mimpure-text suppresses the “relocations remain against allocatable but non-writable sections” linker error message. However, the necessary relocations will trigger copy-on-write, and the shared object is not actually shared across processes. Instead of using -mimpure-text, you should compile all source code with -fpic or -fPIC.

This option is only available on SunOS and Solaris.

-mv8
-msparclite
These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu SPARClite), GCC generates code for the v7 variant of the SPARC architecture.

-mv8 will give you SPARC v8 code. The only difference from v7 code is that the compiler emits the integer multiply and integer divide instructions which exist in SPARC v8 but not in SPARC v7.

-msparclite will give you SPARClite code. This adds the integer multiply, integer divide step and scan (ffs) instructions which exist in SPARClite but not in SPARC v7.

These options are deprecated and will be deleted in a future GCC release. They have been replaced with -mcpu=xxx.

-mcypress
-msupersparc
These two options select the processor for which the code is optimized.

With -mcypress (the default), the compiler optimizes code for the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is also appropriate for the older SPARCStation 1, 2, IPX etc.

With -msupersparc the compiler optimizes code for the SuperSPARC cpu, as used in the SPARCStation 10, 1000 and 2000 series. This flag also enables use of the full SPARC v8 instruction set.

These options are deprecated and will be deleted in a future GCC release. They have been replaced with -mcpu=xxx.

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for machine type cpu_type. Supported values for cpu_type are v7, cypress, v8, supersparc, sparclite, hypersparc, sparclite86x, f930, f934, sparclet, tsc701, v9, ultrasparc, and ultrasparc3.

Default instruction scheduling parameters are used for values that select an architecture and not an implementation. These are v7, v8, sparclite, sparclet, v9.

Here is a list of each supported architecture and their supported implementations.

              v7:             cypress
              v8:             supersparc, hypersparc
              sparclite:      f930, f934, sparclite86x
              sparclet:       tsc701
              v9:             ultrasparc, ultrasparc3
     

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but do not set the instruction set or register set that the option -mcpu=cpu_type would.

The same values for -mcpu=cpu_type can be used for -mtune=cpu_type, but the only useful values are those that select a particular cpu implementation. Those are cypress, supersparc, hypersparc, f930, f934, sparclite86x, tsc701, ultrasparc, and ultrasparc3.

These -m switches are supported in addition to the above on the SPARCLET processor.

-mlittle-endian
Generate code for a processor running in little-endian mode.
-mlive-g0
Treat register %g0 as a normal register. GCC will continue to clobber it as necessary but will not assume it always reads as 0.
-mbroken-saverestore
Generate code that does not use non-trivial forms of the save and restore instructions. Early versions of the SPARCLET processor do not correctly handle save and restore instructions used with arguments. They correctly handle them used without arguments. A save instruction used without arguments increments the current window pointer but does not allocate a new stack frame. It is assumed that the window overflow trap handler will properly handle this case as will interrupt handlers.

These -m switches are supported in addition to the above on SPARC V9 processors in 64-bit environments.

-mlittle-endian
Generate code for a processor running in little-endian mode. It is only available for a few configurations and most notably not on Solaris.
-m32
-m64
Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits.
-mcmodel=medlow
Generate code for the Medium/Low code model: the program must be linked in the low 32 bits of the address space. Pointers are 64 bits. Programs can be statically or dynamically linked.
-mcmodel=medmid
Generate code for the Medium/Middle code model: the program must be linked in the low 44 bits of the address space, the text segment must be less than 2G bytes, and data segment must be within 2G of the text segment. Pointers are 64 bits.
-mcmodel=medany
Generate code for the Medium/Anywhere code model: the program may be linked anywhere in the address space, the text segment must be less than 2G bytes, and data segment must be within 2G of the text segment. Pointers are 64 bits.
-mcmodel=embmedany
Generate code for the Medium/Anywhere code model for embedded systems: assume a 32-bit text and a 32-bit data segment, both starting anywhere (determined at link time). Register %g4 points to the base of the data segment. Pointers are still 64 bits. Programs are statically linked, PIC is not supported.
-mstack-bias
-mno-stack-bias
With -mstack-bias, GCC assumes that the stack pointer, and frame pointer if present, are offset by −2047 which must be added back when making stack frame references. Otherwise, assume no such offset is present.

These switches are supported in addition to the above on Solaris:

-threads
Add support for multithreading using the Solaris threads library. This option sets flags for both the preprocessor and linker. This option does not affect the thread safety of object code produced by the compiler or that of libraries supplied with it.
-pthreads
Add support for multithreading using the POSIX threads library. This option sets flags for both the preprocessor and linker. This option does not affect the thread safety of object code produced by the compiler or that of libraries supplied with it.


Next: , Previous: SPARC Options, Up: Submodel Options

3.17.5 ARM Options

These -m options are defined for Advanced RISC Machines (ARM) architectures:

-mapcs-frame
Generate a stack frame that is compliant with the ARM Procedure Call Standard for all functions, even if this is not strictly necessary for correct execution of the code. Specifying -fomit-frame-pointer with this option will cause the stack frames not to be generated for leaf functions. The default is -mno-apcs-frame.
-mapcs
This is a synonym for -mapcs-frame.
-mapcs-26
Generate code for a processor running with a 26-bit program counter, and conforming to the function calling standards for the APCS 26-bit option. This option replaces the -m2 and -m3 options of previous releases of the compiler.
-mapcs-32
Generate code for a processor running with a 32-bit program counter, and conforming to the function calling standards for the APCS 32-bit option. This option replaces the -m6 option of previous releases of the compiler.
-mthumb-interwork
Generate code which supports calling between the ARM and Thumb instruction sets. Without this option the two instruction sets cannot be reliably used inside one program. The default is -mno-thumb-interwork, since slightly larger code is generated when -mthumb-interwork is specified.
-mno-sched-prolog
Prevent the reordering of instructions in the function prolog, or the merging of those instruction with the instructions in the function's body. This means that all functions will start with a recognizable set of instructions (or in fact one of a choice from a small set of different function prologues), and this information can be used to locate the start if functions inside an executable piece of code. The default is -msched-prolog.
-mhard-float
Generate output containing floating point instructions. This is the default.
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all ARM targets. Normally the facilities of the machine's usual C compiler are used, but this cannot be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation.

-msoft-float changes the calling convention in the output file; therefore, it is only useful if you compile all of a program with this option. In particular, you need to compile libgcc.a, the library that comes with GCC, with -msoft-float in order for this to work.

-mlittle-endian
Generate code for a processor running in little-endian mode. This is the default for all standard configurations.
-mbig-endian
Generate code for a processor running in big-endian mode; the default is to compile code for a little-endian processor.
-mwords-little-endian
This option only applies when generating code for big-endian processors. Generate code for a little-endian word order but a big-endian byte order. That is, a byte order of the form 32107654. Note: this option should only be used if you require compatibility with code for big-endian ARM processors generated by versions of the compiler prior to 2.8.
-malignment-traps
Generate code that will not trap if the MMU has alignment traps enabled. On ARM architectures prior to ARMv4, there were no instructions to access half-word objects stored in memory. However, when reading from memory a feature of the ARM architecture allows a word load to be used, even if the address is unaligned, and the processor core will rotate the data as it is being loaded. This option tells the compiler that such misaligned accesses will cause a MMU trap and that it should instead synthesize the access as a series of byte accesses. The compiler can still use word accesses to load half-word data if it knows that the address is aligned to a word boundary.

This option is ignored when compiling for ARM architecture 4 or later, since these processors have instructions to directly access half-word objects in memory.

-mno-alignment-traps
Generate code that assumes that the MMU will not trap unaligned accesses. This produces better code when the target instruction set does not have half-word memory operations (i.e. implementations prior to ARMv4).

Note that you cannot use this option to access unaligned word objects, since the processor will only fetch one 32-bit aligned object from memory.

The default setting for most targets is -mno-alignment-traps, since this produces better code when there are no half-word memory instructions available.

-mshort-load-bytes
-mno-short-load-words
These are deprecated aliases for -malignment-traps.
-mno-short-load-bytes
-mshort-load-words
This are deprecated aliases for -mno-alignment-traps.
-mcpu=name
This specifies the name of the target ARM processor. GCC uses this name to determine what kind of instructions it can emit when generating assembly code. Permissible names are: arm2, arm250, arm3, arm6, arm60, arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i, arm710, arm710c, arm7100, arm7500, arm7500fe, arm7tdmi, arm8, strongarm, strongarm110, strongarm1100, arm8, arm810, arm9, arm9e, arm920, arm920t, arm940t, arm9tdmi, arm10tdmi, arm1020t, xscale.
-mtune=name
This option is very similar to the -mcpu= option, except that instead of specifying the actual target processor type, and hence restricting which instructions can be used, it specifies that GCC should tune the performance of the code as if the target were of the type specified in this option, but still choosing the instructions that it will generate based on the cpu specified by a -mcpu= option. For some ARM implementations better performance can be obtained by using this option.
-march=name
This specifies the name of the target ARM architecture. GCC uses this name to determine what kind of instructions it can emit when generating assembly code. This option can be used in conjunction with or instead of the -mcpu= option. Permissible names are: armv2, armv2a, armv3, armv3m, armv4, armv4t, armv5, armv5t, armv5te.
-mfpe=number
-mfp=number
This specifies the version of the floating point emulation available on the target. Permissible values are 2 and 3. -mfp= is a synonym for -mfpe=, for compatibility with older versions of GCC.
-mstructure-size-boundary=n
The size of all structures and unions will be rounded up to a multiple of the number of bits set by this option. Permissible values are 8 and 32. The default value varies for different toolchains. For the COFF targeted toolchain the default value is 8. Specifying the larger number can produce faster, more efficient code, but can also increase the size of the program. The two values are potentially incompatible. Code compiled with one value cannot necessarily expect to work with code or libraries compiled with the other value, if they exchange information using structures or unions.
-mabort-on-noreturn
Generate a call to the function abort at the end of a noreturn function. It will be executed if the function tries to return.
-mlong-calls
-mno-long-calls
Tells the compiler to perform function calls by first loading the address of the function into a register and then performing a subroutine call on this register. This switch is needed if the target function will lie outside of the 64 megabyte addressing range of the offset based version of subroutine call instruction.

Even if this switch is enabled, not all function calls will be turned into long calls. The heuristic is that static functions, functions which have the short-call attribute, functions that are inside the scope of a #pragma no_long_calls directive and functions whose definitions have already been compiled within the current compilation unit, will not be turned into long calls. The exception to this rule is that weak function definitions, functions with the long-call attribute or the section attribute, and functions that are within the scope of a #pragma long_calls directive, will always be turned into long calls.

This feature is not enabled by default. Specifying -mno-long-calls will restore the default behavior, as will placing the function calls within the scope of a #pragma long_calls_off directive. Note these switches have no effect on how the compiler generates code to handle function calls via function pointers.

-mnop-fun-dllimport
Disable support for the dllimport attribute.
-msingle-pic-base
Treat the register used for PIC addressing as read-only, rather than loading it in the prologue for each function. The run-time system is responsible for initializing this register with an appropriate value before execution begins.
-mpic-register=reg
Specify the register to be used for PIC addressing. The default is R10 unless stack-checking is enabled, when R9 is used.
-mpoke-function-name
Write the name of each function into the text section, directly preceding the function prologue. The generated code is similar to this:
               t0
                   .ascii "arm_poke_function_name", 0
                   .align
               t1
                   .word 0xff000000 + (t1 - t0)
               arm_poke_function_name
                   mov     ip, sp
                   stmfd   sp!, {fp, ip, lr, pc}
                   sub     fp, ip, #4
     

When performing a stack backtrace, code can inspect the value of pc stored at fp + 0. If the trace function then looks at location pc - 12 and the top 8 bits are set, then we know that there is a function name embedded immediately preceding this location and has length ((pc[-3]) & 0xff000000).

-mthumb
Generate code for the 16-bit Thumb instruction set. The default is to use the 32-bit ARM instruction set.
-mtpcs-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard for all non-leaf functions. (A leaf function is one that does not call any other functions.) The default is -mno-tpcs-frame.
-mtpcs-leaf-frame
Generate a stack frame that is compliant with the Thumb Procedure Call Standard for all leaf functions. (A leaf function is one that does not call any other functions.) The default is -mno-apcs-leaf-frame.
-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruction set header which switches to Thumb mode before executing the rest of the function. This allows these functions to be called from non-interworking code.
-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute correctly regardless of whether the target code has been compiled for interworking or not. There is a small overhead in the cost of executing a function pointer if this option is enabled.


Next: , Previous: ARM Options, Up: Submodel Options

3.17.6 MN10200 Options

These -m options are defined for Matsushita MN10200 architectures:

-mrelax
Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls and absolute memory addresses. This option only has an effect when used on the command line for the final link step.

This option makes symbolic debugging impossible.


Next: , Previous: MN10200 Options, Up: Submodel Options

3.17.7 MN10300 Options

These -m options are defined for Matsushita MN10300 architectures:

-mmult-bug
Generate code to avoid bugs in the multiply instructions for the MN10300 processors. This is the default.
-mno-mult-bug
Do not generate code to avoid bugs in the multiply instructions for the MN10300 processors.
-mam33
Generate code which uses features specific to the AM33 processor.
-mno-am33
Do not generate code which uses features specific to the AM33 processor. This is the default.
-mno-crt0
Do not link in the C run-time initialization object file.
-mrelax
Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls and absolute memory addresses. This option only has an effect when used on the command line for the final link step.

This option makes symbolic debugging impossible.


Next: , Previous: MN10300 Options, Up: Submodel Options

3.17.8 M32R/D Options

These -m options are defined for Mitsubishi M32R/D architectures:

-m32rx
Generate code for the M32R/X.
-m32r
Generate code for the M32R. This is the default.
-mcode-model=small
Assume all objects live in the lower 16MB of memory (so that their addresses can be loaded with the ld24 instruction), and assume all subroutines are reachable with the bl instruction. This is the default.

The addressability of a particular object can be set with the model attribute.

-mcode-model=medium
Assume objects may be anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and assume all subroutines are reachable with the bl instruction.
-mcode-model=large
Assume objects may be anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and assume subroutines may not be reachable with the bl instruction (the compiler will generate the much slower seth/add3/jl instruction sequence).
-msdata=none
Disable use of the small data area. Variables will be put into one of .data, bss, or .rodata (unless the section attribute has been specified). This is the default.

The small data area consists of sections .sdata and .sbss. Objects may be explicitly put in the small data area with the section attribute using one of these sections.

-msdata=sdata
Put small global and static data in the small data area, but do not generate special code to reference them.
-msdata=use
Put small global and static data in the small data area, and generate special instructions to reference them.
-G num
Put global and static objects less than or equal to num bytes into the small data or bss sections instead of the normal data or bss sections. The default value of num is 8. The -msdata option must be set to one of sdata or use for this option to have any effect.

All modules should be compiled with the same -G num value. Compiling with different values of num may or may not work; if it doesn't the linker will give an error message—incorrect code will not be generated.


Next: , Previous: M32R/D Options, Up: Submodel Options

3.17.9 M88K Options

These -m options are defined for Motorola 88k architectures:

-m88000
Generate code that works well on both the m88100 and the m88110.
-m88100
Generate code that works best for the m88100, but that also runs on the m88110.
-m88110
Generate code that works best for the m88110, and may not run on the m88100.
-mbig-pic
Obsolete option to be removed from the next revision. Use -fPIC.
-midentify-revision
Include an ident directive in the assembler output recording the source file name, compiler name and version, timestamp, and compilation flags used.
-mno-underscores
In assembler output, emit symbol names without adding an underscore character at the beginning of each name. The default is to use an underscore as prefix on each name.
-mocs-debug-info
-mno-ocs-debug-info
Include (or omit) additional debugging information (about registers used in each stack frame) as specified in the 88open Object Compatibility Standard, “OCS”. This extra information allows debugging of code that has had the frame pointer eliminated. The default for SVr4 and Delta 88 SVr3.2 is to include this information; other 88k configurations omit this information by default.
-mocs-frame-position
When emitting COFF debugging information for automatic variables and parameters stored on the stack, use the offset from the canonical frame address, which is the stack pointer (register 31) on entry to the function. The SVr4 and Delta88 SVr3.2, and BCS configurations use -mocs-frame-position; other 88k configurations have the default -mno-ocs-frame-position.
-mno-ocs-frame-position
When emitting COFF debugging information for automatic variables and parameters stored on the stack, use the offset from the frame pointer register (register 30). When this option is in effect, the frame pointer is not eliminated when debugging information is selected by the -g switch.
-moptimize-arg-area
Save space by reorganizing the stack frame. This option generates code that does not agree with the 88open specifications, but uses less memory.
-mno-optimize-arg-area
Do not reorganize the stack frame to save space. This is the default. The generated conforms to the specification, but uses more memory.
-mshort-data-num
Generate smaller data references by making them relative to r0, which allows loading a value using a single instruction (rather than the usual two). You control which data references are affected by specifying num with this option. For example, if you specify -mshort-data-512, then the data references affected are those involving displacements of less than 512 bytes. -mshort-data-num is not effective for num greater than 64k.
-mserialize-volatile
-mno-serialize-volatile
Do, or don't, generate code to guarantee sequential consistency of volatile memory references. By default, consistency is guaranteed.

The order of memory references made by the MC88110 processor does not always match the order of the instructions requesting those references. In particular, a load instruction may execute before a preceding store instruction. Such reordering violates sequential consistency of volatile memory references, when there are multiple processors. When consistency must be guaranteed, GCC generates special instructions, as needed, to force execution in the proper order.

The MC88100 processor does not reorder memory references and so always provides sequential consistency. However, by default, GCC generates the special instructions to guarantee consistency even when you use -m88100, so that the code may be run on an MC88110 processor. If you intend to run your code only on the MC88100 processor, you may use -mno-serialize-volatile.

The extra code generated to guarantee consistency may affect the performance of your application. If you know that you can safely forgo this guarantee, you may use -mno-serialize-volatile.

-msvr4
-msvr3
Turn on (-msvr4) or off (-msvr3) compiler extensions related to System V release 4 (SVr4). This controls the following:
  1. Which variant of the assembler syntax to emit.
  2. -msvr4 makes the C preprocessor recognize #pragma weak that is used on System V release 4.
  3. -msvr4 makes GCC issue additional declaration directives used in SVr4.

-msvr4 is the default for the m88k-motorola-sysv4 configuration. -msvr3 is the default for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.
-mno-check-zero-division
-mcheck-zero-division
Do, or don't, generate code to guarantee that integer division by zero will be detected. By default, detection is guaranteed.

Some models of the MC88100 processor fail to trap upon integer division by zero under certain conditions. By default, when compiling code that might be run on such a processor, GCC generates code that explicitly checks for zero-valued divisors and traps with exception number 503 when one is detected. Use of -mno-check-zero-division suppresses such checking for code generated to run on an MC88100 processor.

GCC assumes that the MC88110 processor correctly detects all instances of integer division by zero. When -m88110 is specified, no explicit checks for zero-valued divisors are generated, and both -mcheck-zero-division and -mno-check-zero-division are ignored.

-muse-div-instruction
Use the div instruction for signed integer division on the MC88100 processor. By default, the div instruction is not used.

On the MC88100 processor the signed integer division instruction div) traps to the operating system on a negative operand. The operating system transparently completes the operation, but at a large cost in execution time. By default, when compiling code that might be run on an MC88100 processor, GCC emulates signed integer division using the unsigned integer division instruction divu), thereby avoiding the large penalty of a trap to the operating system. Such emulation has its own, smaller, execution cost in both time and space. To the extent that your code's important signed integer division operations are performed on two nonnegative operands, it may be desirable to use the div instruction directly.

On the MC88110 processor the div instruction (also known as the divs instruction) processes negative operands without trapping to the operating system. When -m88110 is specified, -muse-div-instruction is ignored, and the div instruction is used for signed integer division.

Note that the result of dividing INT_MIN by −1 is undefined. In particular, the behavior of such a division with and without -muse-div-instruction may differ.

-mtrap-large-shift
-mhandle-large-shift
Include code to detect bit-shifts of more than 31 bits; respectively, trap such shifts or emit code to handle them properly. By default GCC makes no special provision for large bit shifts.
-mwarn-passed-structs
Warn when a function passes a struct as an argument or result. Structure-passing conventions have changed during the evolution of the C language, and are often the source of portability problems. By default, GCC issues no such warning.


Next: , Previous: M88K Options, Up: Submodel Options

3.17.10 IBM RS/6000 and PowerPC Options

These -m options are defined for the IBM RS/6000 and PowerPC:

-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt
-mpowerpc64
-mno-powerpc64
GCC supports two related instruction set architectures for the RS/6000 and PowerPC. The POWER instruction set are those instructions supported by the rios chip set used in the original RS/6000 systems and the PowerPC instruction set is the architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and the IBM 4xx microprocessors.

Neither architecture is a subset of the other. However there is a large common subset of instructions supported by both. An MQ register is included in processors supporting the POWER architecture.

You use these options to specify which instructions are available on the processor you are using. The default value of these options is determined when configuring GCC. Specifying the -mcpu=cpu_type overrides the specification of these options. We recommend you use the -mcpu=cpu_type option rather than the options listed above.

The -mpower option allows GCC to generate instructions that are found only in the POWER architecture and to use the MQ register. Specifying -mpower2 implies -power and also allows GCC to generate instructions that are present in the POWER2 architecture but not the original POWER architecture.

The -mpowerpc option allows GCC to generate instructions that are found only in the 32-bit subset of the PowerPC architecture. Specifying -mpowerpc-gpopt implies -mpowerpc and also allows GCC to use the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. Specifying -mpowerpc-gfxopt implies -mpowerpc and also allows GCC to use the optional PowerPC architecture instructions in the Graphics group, including floating-point select.

The -mpowerpc64 option allows GCC to generate the additional 64-bit instructions that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to -mno-powerpc64.

If you specify both -mno-power and -mno-powerpc, GCC will use only the instructions in the common subset of both architectures plus some special AIX common-mode calls, and will not use the MQ register. Specifying both -mpower and -mpowerpc permits GCC to use any instruction from either architecture and to allow use of the MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics
Select which mnemonics to use in the generated assembler code. With -mnew-mnemonics, GCC uses the assembler mnemonics defined for the PowerPC architecture. With -mold-mnemonics it uses the assembler mnemonics defined for the POWER architecture. Instructions defined in only one architecture have only one mnemonic; GCC uses that mnemonic irrespective of which of these options is specified.

GCC defaults to the mnemonics appropriate for the architecture in use. Specifying -mcpu=cpu_type sometimes overrides the value of these option. Unless you are building a cross-compiler, you should normally not specify either -mnew-mnemonics or -mold-mnemonics, but should instead accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics, and instruction scheduling parameters for machine type cpu_type. Supported values for cpu_type are rios, rios1, rsc, rios2, rs64a, 601, 602, 603, 603e, 604, 604e, 620, 630, 740, 7400, 7450, 750, power, power2, powerpc, 403, 505, 801, 821, 823, and 860 and common.

-mcpu=common selects a completely generic processor. Code generated under this option will run on any POWER or PowerPC processor. GCC will use only the instructions in the common subset of both architectures, and will not use the MQ register. GCC assumes a generic processor model for scheduling purposes.

-mcpu=power, -mcpu=power2, -mcpu=powerpc, and -mcpu=powerpc64 specify generic POWER, POWER2, pure 32-bit PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine types, with an appropriate, generic processor model assumed for scheduling purposes.

The other options specify a specific processor. Code generated under those options will run best on that processor, and may not run at all on others.

The -mcpu options automatically enable or disable other -m options as follows:

common
-mno-power, -mno-powerpc
power
power2
rios1
rios2
rsc
-mpower, -mno-powerpc, -mno-new-mnemonics
powerpc
rs64a
602
603
603e
604
620
630
740
7400
7450
750
505
-mno-power, -mpowerpc, -mnew-mnemonics
601
-mpower, -mpowerpc, -mnew-mnemonics
403
821
860
-mno-power, -mpowerpc, -mnew-mnemonics, -msoft-float

-mtune=cpu_type
Set the instruction scheduling parameters for machine type cpu_type, but do not set the architecture type, register usage, or choice of mnemonics, as -mcpu=cpu_type would. The same values for cpu_type are used for -mtune as for -mcpu. If both are specified, the code generated will use the architecture, registers, and mnemonics set by -mcpu, but the scheduling parameters set by -mtune.
-maltivec
-mno-altivec
These switches enable or disable the use of built-in functions that allow access to the AltiVec instruction set. You may also need to set -mabi=altivec to adjust the current ABI with AltiVec ABI enhancements.
-mabi=spe
Extend the current ABI with SPE ABI extensions. This does not change the default ABI, instead it adds the SPE ABI extensions to the current ABI.
-mabi=no-spe
Disable Booke SPE ABI extensions for the current ABI.
-misel=yes/no
-misel
This switch enables or disables the generation of ISEL instructions.
-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for every executable file. The -mfull-toc option is selected by default. In that case, GCC will allocate at least one TOC entry for each unique non-automatic variable reference in your program. GCC will also place floating-point constants in the TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the available TOC space, you can reduce the amount of TOC space used with the -mno-fp-in-toc and -mno-sum-in-toc options. -mno-fp-in-toc prevents GCC from putting floating-point constants in the TOC and -mno-sum-in-toc forces GCC to generate code to calculate the sum of an address and a constant at run-time instead of putting that sum into the TOC. You may specify one or both of these options. Each causes GCC to produce very slightly slower and larger code at the expense of conserving TOC space.

If you still run out of space in the TOC even when you specify both of these options, specify -mminimal-toc instead. This option causes GCC to make only one TOC entry for every file. When you specify this option, GCC will produce code that is slower and larger but which uses extremely little TOC space. You may wish to use this option only on files that contain less frequently executed code.

-maix64
-maix32
Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit long type, and the infrastructure needed to support them. Specifying -maix64 implies -mpowerpc64 and -mpowerpc, while -maix32 disables the 64-bit ABI and implies -mno-powerpc64. GCC defaults to -maix32.
-mxl-call
-mno-xl-call
On AIX, pass floating-point arguments to prototyped functions beyond the register save area (RSA) on the stack in addition to argument FPRs. The AIX calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the address of its arguments with fewer arguments than declared. AIX XL compilers access floating point arguments which do not fit in the RSA from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by default and only is necessary when calling subroutines compiled by AIX XL compilers without optimization.
-mpe
Support IBM RS/6000 SP Parallel Environment (PE). Link an application written to use message passing with special startup code to enable the application to run. The system must have PE installed in the standard location (/usr/lpp/ppe.poe/), or the specs file must be overridden with the -specs= option to specify the appropriate directory location. The Parallel Environment does not support threads, so the -mpe option and the -pthread option are incompatible.
-msoft-float
-mhard-float
Generate code that does not use (uses) the floating-point register set. Software floating point emulation is provided if you use the -msoft-float option, and pass the option to GCC when linking.
-mmultiple
-mno-multiple
Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. These instructions are generated by default on POWER systems, and not generated on PowerPC systems. Do not use -mmultiple on little endian PowerPC systems, since those instructions do not work when the processor is in little endian mode. The exceptions are PPC740 and PPC750 which permit the instructions usage in little endian mode.
-mstring
-mno-string
Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. These instructions are generated by default on POWER systems, and not generated on PowerPC systems. Do not use -mstring on little endian PowerPC systems, since those instructions do not work when the processor is in little endian mode. The exceptions are PPC740 and PPC750 which permit the instructions usage in little endian mode.
-mupdate
-mno-update
Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. These instructions are generated by default. If you use -mno-update, there is a small window between the time that the stack pointer is updated and the address of the previous frame is stored, which means code that walks the stack frame across interrupts or signals may get corrupted data.
-mfused-madd
-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accumulate instructions. These instructions are generated by default if hardware floating is used.
-mno-bit-align
-mbit-align
On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain bit-fields to be aligned to the base type of the bit-field.

For example, by default a structure containing nothing but 8 unsigned bit-fields of length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By using -mno-bit-align, the structure would be aligned to a 1 byte boundary and be one byte in size.

-mno-strict-align
-mstrict-align
On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory references will be handled by the system.
-mrelocatable
-mno-relocatable
On embedded PowerPC systems generate code that allows (does not allow) the program to be relocated to a different address at runtime. If you use -mrelocatable on any module, all objects linked together must be compiled with -mrelocatable or -mrelocatable-lib.
-mrelocatable-lib
-mno-relocatable-lib
On embedded PowerPC systems generate code that allows (does not allow) the program to be relocated to a different address at runtime. Modules compiled with -mrelocatable-lib can be linked with either modules compiled without -mrelocatable and -mrelocatable-lib or with modules compiled with the -mrelocatable options.
-mno-toc
-mtoc
On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer to a global area pointing to the addresses used in the program.
-mlittle
-mlittle-endian
On System V.4 and embedded PowerPC systems compile code for the processor in little endian mode. The -mlittle-endian option is the same as -mlittle.
-mbig
-mbig-endian
On System V.4 and embedded PowerPC systems compile code for the processor in big endian mode. The -mbig-endian option is the same as -mbig.
-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling conventions that adheres to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supplement. This is the default unless you configured GCC using powerpc-*-eabiaix.
-mcall-sysv-eabi
Specify both -mcall-sysv and -meabi options.
-mcall-sysv-noeabi
Specify both -mcall-sysv and -mno-eabi options.
-mcall-aix
On System V.4 and embedded PowerPC systems compile code using calling conventions that are similar to those used on AIX. This is the default if you configured GCC using powerpc-*-eabiaix.
-mcall-solaris
On System V.4 and embedded PowerPC systems compile code for the Solaris operating system.
-mcall-linux
On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU system.
-mcall-gnu
On System V.4 and embedded PowerPC systems compile code for the Hurd-based GNU system.
-mcall-netbsd
On System V.4 and embedded PowerPC systems compile code for the NetBSD operating system.
-maix-struct-return
Return all structures in memory (as specified by the AIX ABI).
-msvr4-struct-return
Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI).
-mabi=altivec
Extend the current ABI with AltiVec ABI extensions. This does not change the default ABI, instead it adds the AltiVec ABI extensions to the current ABI.
-mabi=no-altivec
Disable AltiVec ABI extensions for the current ABI.
-mprototype
-mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions are properly prototyped. Otherwise, the compiler must insert an instruction before every non prototyped call to set or clear bit 6 of the condition code register (CR) to indicate whether floating point values were passed in the floating point registers in case the function takes a variable arguments. With -mprototype, only calls to prototyped variable argument functions will set or clear the bit.
-msim
On embedded PowerPC systems, assume that the startup module is called sim-crt0.o and that the standard C libraries are libsim.a and libc.a. This is the default for powerpc-*-eabisim. configurations.
-mmvme
On embedded PowerPC systems, assume that the startup module is called crt0.o and the standard C libraries are libmvme.a and libc.a.
-mads
On embedded PowerPC systems, assume that the startup module is called crt0.o and the standard C libraries are libads.a and libc.a.
-myellowknife
On embedded PowerPC systems, assume that the startup module is called crt0.o and the standard C libraries are libyk.a and libc.a.
-mvxworks
On System V.4 and embedded PowerPC systems, specify that you are compiling for a VxWorks system.
-mwindiss
Specify that you are compiling for the WindISS simulation environment.
-memb
On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags header to indicate that eabi extended relocations are used.
-meabi
-mno-eabi
On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded Applications Binary Interface (eabi) which is a set of modifications to the System V.4 specifications. Selecting -meabi means that the stack is aligned to an 8 byte boundary, a function __eabi is called to from main to set up the eabi environment, and the -msdata option can use both r2 and r13 to point to two separate small data areas. Selecting -mno-eabi means that the stack is aligned to a 16 byte boundary, do not call an initialization function from main, and the -msdata option will only use r13 to point to a single small data area. The -meabi option is on by default if you configured GCC using one of the powerpc*-*-eabi* options.
-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const global and static data in the .sdata2 section, which is pointed to by register r2. Put small initialized non-const global and static data in the .sdata section, which is pointed to by register r13. Put small uninitialized global and static data in the .sbss section, which is adjacent to the .sdata section. The -msdata=eabi option is incompatible with the -mrelocatable option. The -msdata=eabi option also sets the -memb option.
-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static data in the .sdata section, which is pointed to by register r13. Put small uninitialized global and static data in the .sbss section, which is adjacent to the .sdata section. The -msdata=sysv option is incompatible with the -mrelocatable option.
-msdata=default
-msdata
On System V.4 and embedded PowerPC systems, if -meabi is used, compile code the same as -msdata=eabi, otherwise compile code the same as -msdata=sysv.
-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static data in the .sdata section. Put small uninitialized global and static data in the .sbss section. Do not use register r13 to address small data however. This is the default behavior unless other -msdata options are used.
-msdata=none
-mno-sdata
On embedded PowerPC systems, put all initialized global and static data in the .data section, and all uninitialized data in the .bss section.
-G num
On embedded PowerPC systems, put global and static items less than or equal to num bytes into the small data or bss sections instead of the normal data or bss section. By default, num is 8. The -G num switch is also passed to the linker. All modules should be compiled with the same -G num value.
-mregnames
-mno-regnames
On System V.4 and embedded PowerPC systems do (do not) emit register names in the assembly language output using symbolic forms.
-mlongcall
-mno-longcall
Default to making all function calls via pointers, so that functions which reside further than 64 megabytes (67,108,864 bytes) from the current location can be called. This setting can be overridden by the shortcall function attribute, or by #pragma longcall(0).

Some linkers are capable of detecting out-of-range calls and generating glue code on the fly. On these systems, long calls are unnecessary and generate slower code. As of this writing, the AIX linker can do this, as can the GNU linker for PowerPC/64. It is planned to add this feature to the GNU linker for 32-bit PowerPC systems as well.

In the future, we may cause GCC to ignore all longcall specifications when the linker is known to generate glue.

-pthread
Adds support for multithreading with the pthreads library. This option sets flags for both the preprocessor and linker.


Next: , Previous: RS/6000 and PowerPC Options, Up: Submodel Options

3.17.11 Darwin Options

These options are defined for all architectures running the Darwin operating system. They are useful for compatibility with other Mac OS compilers.

-all_load
Loads all members of static archive libraries. See man ld(1) for more information.
-arch_errors_fatal
Cause the errors having to do with files that have the wrong architecture to be fatal.
-bind_at_load
Causes the output file to be marked such that the dynamic linker will bind all undefined references when the file is loaded or launched.
-bundle
Produce a Mach-o bundle format file. See man ld(1) for more information.
-bundle_loader executable
This specifies the executable that will be loading the build output file being linked. See man ld(1) for more information.
-allowable_client client_name
-arch_only
-client_name
-compatibility_version
-current_version
-dependency-file
-dylib_file
-dylinker_install_name
-dynamic
-dynamiclib
-exported_symbols_list
-filelist
-flat_namespace
-force_cpusubtype_ALL
-force_flat_namespace
-headerpad_max_install_names
-image_base
-init
-install_name
-keep_private_externs
-multi_module
-multiply_defined
-multiply_defined_unused
-noall_load
-nomultidefs
-noprebind
-noseglinkedit
-pagezero_size
-prebind
-prebind_all_twolevel_modules
-private_bundle
-read_only_relocs
-sectalign
-sectobjectsymbols
-whyload
-seg1addr
-sectcreate
-sectobjectsymbols
-sectorder
-seg_addr_table
-seg_addr_table_filename
-seglinkedit
-segprot
-segs_read_only_addr
-segs_read_write_addr
-single_module
-static
-sub_library
-sub_umbrella
-twolevel_namespace
-umbrella
-undefined
-unexported_symbols_list
-weak_reference_mismatches
-whatsloaded
This options are available for Darwin linker. Darwin linker man page describes them in detail.


Next: , Previous: Darwin Options, Up: Submodel Options

3.17.12 IBM RT Options

These -m options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is the default.
-mcall-lib-mul
Call lmul$$ for integer multiples.
-mfull-fp-blocks
Generate full-size floating point data blocks, including the minimum amount of scratch space recommended by IBM. This is the default.
-mminimum-fp-blocks
Do not include extra scratch space in floating point data blocks. This results in smaller code, but slower execution, since scratch space must be allocated dynamically.


-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling convention in which floating point arguments are passed in floating point registers. Note that stdarg.h will not work with floating point operands if this option is specified.
-mfp-arg-in-gregs
Use the normal calling convention for floating point arguments. This is the default.
-mhc-struct-return
Return structures of more than one word in memory, rather than in a register. This provides compatibility with the MetaWare HighC (hc) compiler. Use the option -fpcc-struct-return for compatibility with the Portable C Compiler (pcc).
-mnohc-struct-return
Return some structures of more than one word in registers, when convenient. This is the default. For compatibility with the IBM-supplied compilers, use the option -fpcc-struct-return or the option -mhc-struct-return.


Next: , Previous: RT Options, Up: Submodel Options

3.17.13 MIPS Options

These -m options are defined for the MIPS family of computers:

-march=arch
Generate code that will run on arch, which can be the name of a generic MIPS ISA, or the name of a particular processor. The ISA names are: mips1, mips2, mips3, mips4, mips32 and mips64. The processor names are: r2000, r3000, r3900, r4000, vr4100, vr4300, r4400, r4600, r4650, vr5000, r6000, r8000, 4kc, 4kp, 5kc, 20kc, orion, and sb1. The special value from-abi selects the most compatible architecture for the selected ABI (that is, mips1 for 32-bit ABIs and mips3 for 64-bit ABIs).

In processor names, a final 000 can be abbreviated as k (for example, -march=r2k). Prefixes are optional, and vr may be written r.

GCC defines two macros based on the value of this option. The first is _MIPS_ARCH, which gives the name of target architecture, as a string. The second has the form _MIPS_ARCH_foo, where foo is the capitalized value of _MIPS_ARCH. For example, -march=r2000 will set _MIPS_ARCH to "r2000" and define the macro _MIPS_ARCH_R2000.

Note that the _MIPS_ARCH macro uses the processor names given above. In other words, it will have the full prefix and will not abbreviate 000 as k. In the case of from-abi, the macro names the resolved architecture (either "mips1" or "mips3"). It names the default architecture when no -march option is given.

-mtune=arch
Optimize for arch. Among other things, this option controls the way instructions are scheduled, and the perceived cost of arithmetic operations. The list of arch values is the same as for -march.

When this option is not used, GCC will optimize for the processor specified by -march. By using -march and -mtune together, it is possible to generate code that will run on a family of processors, but optimize the code for one particular member of that family.

-mtune defines the macros _MIPS_TUNE and _MIPS_TUNE_foo, which work in the same way as the -march ones described above.

-mips1
Equivalent to -march=mips1.
-mips2
Equivalent to -march=mips2.
-mips3
Equivalent to -march=mips3.
-mips4
Equivalent to -march=mips4.
-mips32
Equivalent to -march=mips32.
-mips64
Equivalent to -march=mips64.
-mfused-madd
-mno-fused-madd
Generate code that uses (does not use) the floating point multiply and accumulate instructions, when they are available. These instructions are generated by default if they are available, but this may be undesirable if the extra precision causes problems or on certain chips in the mode where denormals are rounded to zero where denormals generated by multiply and accumulate instructions cause exceptions anyway.
-mfp32
Assume that floating point registers are 32 bits wide.
-mfp64
Assume that floating point registers are 64 bits wide.
-mgp32
Assume that general purpose registers are 32 bits wide.
-mgp64
Assume that general purpose registers are 64 bits wide.
-mint64
Force int and long types to be 64 bits wide. See -mlong32 for an explanation of the default, and the width of pointers.
-mlong64
Force long types to be 64 bits wide. See -mlong32 for an explanation of the default, and the width of pointers.
-mlong32
Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers depends on the ABI. All the supported ABIs use 32-bit ints. The n64 ABI uses 64-bit longs, as does the 64-bit Cygnus EABI; the others use 32-bit longs. Pointers are the same size as longs, or the same size as integer registers, whichever is smaller.

-mabi=32
-mabi=o64
-mabi=n32
-mabi=64
-mabi=eabi
-mabi=meabi
Generate code for the given ABI.

Note that there are two embedded ABIs: -mabi=eabi selects the one defined by Cygnus while -meabi=meabi selects the one defined by MIPS. Both these ABIs have 32-bit and 64-bit variants. Normally, GCC will generate 64-bit code when you select a 64-bit architecture, but you can use -mgp32 to get 32-bit code instead.

-mmips-as
Generate code for the MIPS assembler, and invoke mips-tfile to add normal debug information. This is the default for all platforms except for the OSF/1 reference platform, using the OSF/rose object format. If the either of the -gstabs or -gstabs+ switches are used, the mips-tfile program will encapsulate the stabs within MIPS ECOFF.
-mgas
Generate code for the GNU assembler. This is the default on the OSF/1 reference platform, using the OSF/rose object format. Also, this is the default if the configure option --with-gnu-as is used.
-msplit-addresses
-mno-split-addresses
Generate code to load the high and low parts of address constants separately. This allows GCC to optimize away redundant loads of the high order bits of addresses. This optimization requires GNU as and GNU ld. This optimization is enabled by default for some embedded targets where GNU as and GNU ld are standard.
-mrnames
-mno-rnames
The -mrnames switch says to output code using the MIPS software names for the registers, instead of the hardware names (ie, a0 instead of $4). The only known assembler that supports this option is the Algorithmics assembler.
-mgpopt
-mno-gpopt
The -mgpopt switch says to write all of the data declarations before the instructions in the text section, this allows the MIPS assembler to generate one word memory references instead of using two words for short global or static data items. This is on by default if optimization is selected.
-mstats
-mno-stats
For each non-inline function processed, the -mstats switch causes the compiler to emit one line to the standard error file to print statistics about the program (number of registers saved, stack size, etc.).
-mmemcpy
-mno-memcpy
The -mmemcpy switch makes all block moves call the appropriate string function (memcpy or bcopy) instead of possibly generating inline code.
-mmips-tfile
-mno-mips-tfile
The -mno-mips-tfile switch causes the compiler not postprocess the object file with the mips-tfile program, after the MIPS assembler has generated it to add debug support. If mips-tfile is not run, then no local variables will be available to the debugger. In addition, stage2 and stage3 objects will have the temporary file names passed to the assembler embedded in the object file, which means the objects will not compare the same. The -mno-mips-tfile switch should only be used when there are bugs in the mips-tfile program that prevents compilation.
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries are not part of GCC. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation.
-mhard-float
Generate output containing floating point instructions. This is the default if you use the unmodified sources.
-mabicalls
-mno-abicalls
Emit (or do not emit) the pseudo operations .abicalls, .cpload, and .cprestore that some System V.4 ports use for position independent code.
-mlong-calls
-mno-long-calls
Do all calls with the JALR instruction, which requires loading up a function's address into a register before the call. You need to use this switch, if you call outside of the current 512 megabyte segment to functions that are not through pointers.
-mhalf-pic
-mno-half-pic
Put pointers to extern references into the data section and load them up, rather than put the references in the text section.
-membedded-pic
-mno-embedded-pic
Generate PIC code suitable for some embedded systems. All calls are made using PC relative address, and all data is addressed using the $gp register. No more than 65536 bytes of global data may be used. This requires GNU as and GNU ld which do most of the work. This currently only works on targets which use ECOFF; it does not work with ELF.
-membedded-data
-mno-embedded-data
Allocate variables to the read-only data section first if possible, then next in the small data section if possible, otherwise in data. This gives slightly slower code than the default, but reduces the amount of RAM required when executing, and thus may be preferred for some embedded systems.
-muninit-const-in-rodata
-mno-uninit-const-in-rodata
When used together with -membedded-data, it will always store uninitialized const variables in the read-only data section.
-msingle-float
-mdouble-float
The -msingle-float switch tells gcc to assume that the floating point coprocessor only supports single precision operations, as on the r4650 chip. The -mdouble-float switch permits gcc to use double precision operations. This is the default.
-mmad
-mno-mad
Permit use of the mad, madu and mul instructions, as on the r4650 chip.
-m4650
Turns on -msingle-float, -mmad, and, at least for now, -mcpu=r4650.
-mips16
-mno-mips16
Enable 16-bit instructions.
-mentry
Use the entry and exit pseudo ops. This option can only be used with -mips16.
-EL
Compile code for the processor in little endian mode. The requisite libraries are assumed to exist.
-EB
Compile code for the processor in big endian mode. The requisite libraries are assumed to exist.
-G num
Put global and static items less than or equal to num bytes into the small data or bss sections instead of the normal data or bss section. This allows the assembler to emit one word memory reference instructions based on the global pointer (gp or $28), instead of the normal two words used. By default, num is 8 when the MIPS assembler is used, and 0 when the GNU assembler is used. The -G num switch is also passed to the assembler and linker. All modules should be compiled with the same -G num value.
-nocpp
Tell the MIPS assembler to not run its preprocessor over user assembler files (with a .s suffix) when assembling them.
-mfix7000
Pass an option to gas which will cause nops to be inserted if the read of the destination register of an mfhi or mflo instruction occurs in the following two instructions.
-no-crt0
Do not include the default crt0.
-mflush-func=func
-mno-flush-func
Specifies the function to call to flush the I and D caches, or to not call any such function. If called, the function must take the same arguments as the common _flush_func(), that is, the address of the memory range for which the cache is being flushed, the size of the memory range, and the number 3 (to flush both caches). The default depends on the target gcc was configured for, but commonly is either _flush_func or __cpu_flush.
-mbranch-likely
-mno-branch-likely
Enable or disable use of Branch Likely instructions, regardless of the default for the selected architecture. By default, Branch Likely instructions may be generated if they are supported by the selected architecture. An exception is for the MIPS32 and MIPS64 architectures and processors which implement those architectures; for those, Branch Likely instructions will not be generated by default because the MIPS32 and MIPS64 architectures specifically deprecate their use.


Next: , Previous: MIPS Options, Up: Submodel Options

3.17.14 Intel 386 and AMD x86-64 Options

These -m options are defined for the i386 and x86-64 family of computers:

-mcpu=cpu-type
Tune to cpu-type everything applicable about the generated code, except for the ABI and the set of available instructions. The choices for cpu-type are i386, i486, i586, i686, pentium, pentium-mmx, pentiumpro, pentium2, pentium3, pentium4, prescott, nocona, k6, k6-2, k6-3, athlon, athlon-tbird, athlon-4, athlon-xp, athlon-mp, winchip-c6, winchip2 and c3.

While picking a specific cpu-type will schedule things appropriately for that particular chip, the compiler will not generate any code that does not run on the i386 without the -march=cpu-type option being used. i586 is equivalent to pentium and i686 is equivalent to pentiumpro. k6 and athlon are the AMD chips as opposed to the Intel ones.

-march=cpu-type
Generate instructions for the machine type cpu-type. The choices for cpu-type are the same as for -mcpu. Moreover, specifying -march=cpu-type implies -mcpu=cpu-type.
-m386
-m486
-mpentium
-mpentiumpro
These options are synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and -mcpu=pentiumpro respectively. These synonyms are deprecated.
-mfpmath=unit
Generate floating point arithmetics for selected unit unit. The choices for unit are:
387
Use the standard 387 floating point coprocessor present majority of chips and emulated otherwise. Code compiled with this option will run almost everywhere. The temporary results are computed in 80bit precision instead of precision specified by the type resulting in slightly different results compared to most of other chips. See -ffloat-store for more detailed description.

This is the default choice for i386 compiler.

sse
Use scalar floating point instructions present in the SSE instruction set. This instruction set is supported by Pentium3 and newer chips, in the AMD line by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier version of SSE instruction set supports only single precision arithmetics, thus the double and extended precision arithmetics is still done using 387. Later version, present only in Pentium4 and the future AMD x86-64 chips supports double precision arithmetics too.

For i387 you need to use -march=cpu-type, -msse or -msse2 switches to enable SSE extensions and make this option effective. For x86-64 compiler, these extensions are enabled by default.

The resulting code should be considerably faster in the majority of cases and avoid the numerical instability problems of 387 code, but may break some existing code that expects temporaries to be 80bit.

This is the default choice for the x86-64 compiler.

sse,387
Attempt to utilize both instruction sets at once. This effectively double the amount of available registers and on chips with separate execution units for 387 and SSE the execution resources too. Use this option with care, as it is still experimental, because the gcc register allocator does not model separate functional units well.

-masm=dialect
Output asm instructions using selected dialect. Supported choices are intel or att (the default one).
-mieee-fp
-mno-ieee-fp
Control whether or not the compiler uses IEEE floating point comparisons. These handle correctly the case where the result of a comparison is unordered.
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries are not part of GCC. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation.

On machines where a function returns floating point results in the 80387 register stack, some floating point opcodes may be emitted even if -msoft-float is used.

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double in an FPU register, even if there is no FPU. The idea is that the operating system should emulate an FPU.

The option -mno-fp-ret-in-387 causes such values to be returned in ordinary CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt instructions for the 387. Specify this option to avoid generating those instructions. This option is the default on FreeBSD, OpenBSD and NetBSD. This option is overridden when -march indicates that the target cpu will always have an FPU and so the instruction will not need emulation. As of revision 2.6.1, these instructions are not generated unless you also use the -funsafe-math-optimizations switch.
-malign-double
-mno-align-double
Control whether GCC aligns double, long double, and long long variables on a two word boundary or a one word boundary. Aligning double variables on a two word boundary will produce code that runs somewhat faster on a Pentium at the expense of more memory.

Warning: if you use the -malign-double switch, structures containing the above types will be aligned differently than the published application binary interface specifications for the 386 and will not be binary compatible with structures in code compiled without that switch.

-m96bit-long-double
-m128bit-long-double
These switches control the size of long double type. The i386 application binary interface specifies the size to be 96 bits, so -m96bit-long-double is the default in 32 bit mode.

Modern architectures (Pentium and newer) would prefer long double to be aligned to an 8 or 16 byte boundary. In arrays or structures conforming to the ABI, this would not be possible. So specifying a -m128bit-long-double will align long double to a 16 byte boundary by padding the long double with an additional 32 bit zero.

In the x86-64 compiler, -m128bit-long-double is the default choice as its ABI specifies that long double is to be aligned on 16 byte boundary.

Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a long double.

Warning: if you override the default value for your target ABI, the structures and arrays containing long double variables will change their size as well as function calling convention for function taking long double will be modified. Hence they will not be binary compatible with arrays or structures in code compiled without that switch.

-msvr3-shlib
-mno-svr3-shlib
Control whether GCC places uninitialized local variables into the bss or data segments. -msvr3-shlib places them into bss. These options are meaningful only on System V Release 3.
-mrtd
Use a different function-calling convention, in which functions that take a fixed number of arguments return with the ret num instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there.

You can specify that an individual function is called with this calling sequence with the function attribute stdcall. You can also override the -mrtd option by using the function attribute cdecl. See Function Attributes.

Warning: this calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments (including printf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.)

-mregparm=num
Control how many registers are used to pass integer arguments. By default, no registers are used to pass arguments, and at most 3 registers can be used. You can control this behavior for a specific function by using the function attribute regparm. See Function Attributes.

Warning: if you use this switch, and num is nonzero, then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules.

-mpreferred-stack-boundary=num
Attempt to keep the stack boundary aligned to a 2 raised to num byte boundary. If -mpreferred-stack-boundary is not specified, the default is 4 (16 bytes or 128 bits), except when optimizing for code size (-Os), in which case the default is the minimum correct alignment (4 bytes for x86, and 8 bytes for x86-64).

On Pentium and PentiumPro, double and long double values should be aligned to an 8 byte boundary (see -malign-double) or suffer significant run time performance penalties. On Pentium III, the Streaming SIMD Extension (SSE) data type __m128 suffers similar penalties if it is not 16 byte aligned.

To ensure proper alignment of this values on the stack, the stack boundary must be as aligned as that required by any value stored on the stack. Further, every function must be generated such that it keeps the stack aligned. Thus calling a function compiled with a higher preferred stack boundary from a function compiled with a lower preferred stack boundary will most likely misalign the stack. It is recommended that libraries that use callbacks always use the default setting.

This extra alignment does consume extra stack space, and generally increases code size. Code that is sensitive to stack space usage, such as embedded systems and operating system kernels, may want to reduce the preferred alignment to -mpreferred-stack-boundary=2.

-mmmx
-mno-mmx
-msse
-mno-sse
-msse2
-mno-sse2
-msse3
-mno-sse3
-m3dnow
-mno-3dnow
These switches enable or disable the use of built-in functions that allow direct access to the MMX, SSE, SSE2, SSE3 and 3Dnow extensions of the instruction set.

See X86 Built-in Functions, for details of the functions enabled and disabled by these switches.

To have SSE/SSE2 instructions generated automatically from floating-point code, see -mfpmath=sse.

-mpush-args
-mno-push-args
Use PUSH operations to store outgoing parameters. This method is shorter and usually equally fast as method using SUB/MOV operations and is enabled by default. In some cases disabling it may improve performance because of improved scheduling and reduced dependencies.
-maccumulate-outgoing-args
If enabled, the maximum amount of space required for outgoing arguments will be computed in the function prologue. This is faster on most modern CPUs because of reduced dependencies, improved scheduling and reduced stack usage when preferred stack boundary is not equal to 2. The drawback is a notable increase in code size. This switch implies -mno-push-args.
-mthreads
Support thread-safe exception handling on Mingw32. Code that relies on thread-safe exception handling must compile and link all code with the -mthreads option. When compiling, -mthreads defines -D_MT; when linking, it links in a special thread helper library -lmingwthrd which cleans up per thread exception handling data.
-mno-align-stringops
Do not align destination of inlined string operations. This switch reduces code size and improves performance in case the destination is already aligned, but gcc don't know about it.
-minline-all-stringops
By default GCC inlines string operations only when destination is known to be aligned at least to 4 byte boundary. This enables more inlining, increase code size, but may improve performance of code that depends on fast memcpy, strlen and memset for short lengths.
-momit-leaf-frame-pointer
Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up and restore frame pointers and makes an extra register available in leaf functions. The option -fomit-frame-pointer removes the frame pointer for all functions which might make debugging harder.

These -m switches are supported in addition to the above on AMD x86-64 processors in 64-bit environments.

-m32
-m64
Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any i386 system. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits and generates code for AMD's x86-64 architecture.
-mno-red-zone
Do not use a so called red zone for x86-64 code. The red zone is mandated by the x86-64 ABI, it is a 128-byte area beyond the location of the stack pointer that will not be modified by signal or interrupt handlers and therefore can be used for temporary data without adjusting the stack pointer. The flag -mno-red-zone disables this red zone.
-mcmodel=small
Generate code for the small code model: the program and its symbols must be linked in the lower 2 GB of the address space. Pointers are 64 bits. Programs can be statically or dynamically linked. This is the default code model.
-mcmodel=kernel
Generate code for the kernel code model. The kernel runs in the negative 2 GB of the address space. This model has to be used for Linux kernel code.
-mcmodel=medium
Generate code for the medium model: The program is linked in the lower 2 GB of the address space but symbols can be located anywhere in the address space. Programs can be statically or dynamically linked, but building of shared libraries are not supported with the medium model.
-mcmodel=large
Generate code for the large model: This model makes no assumptions about addresses and sizes of sections. Currently GCC does not implement this model.


Next: , Previous: i386 and x86-64 Options, Up: Submodel Options

3.17.15 HPPA Options

These -m options are defined for the HPPA family of computers:

-march=architecture-type
Generate code for the specified architecture. The choices for architecture-type are 1.0 for PA 1.0, 1.1 for PA 1.1, and 2.0 for PA 2.0 processors. Refer to /usr/lib/sched.models on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures will run on higher numbered architectures, but not the other way around.

PA 2.0 support currently requires gas snapshot 19990413 or later. The next release of binutils (current is 2.9.1) will probably contain PA 2.0 support.

-mpa-risc-1-0
-mpa-risc-1-1
-mpa-risc-2-0
Synonyms for -march=1.0, -march=1.1, and -march=2.0 respectively.
-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assembler/linker complain about out of range branches within a switch table.
-mjump-in-delay
Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer for the function call to be the target of the conditional jump.
-mdisable-fpregs
Prevent floating point registers from being used in any manner. This is necessary for compiling kernels which perform lazy context switching of floating point registers. If you use this option and attempt to perform floating point operations, the compiler will abort.
-mdisable-indexing
Prevent the compiler from using indexing address modes. This avoids some rather obscure problems when compiling MIG generated code under MACH.
-mno-space-regs
Generate code that assumes the target has no space registers. This allows GCC to generate faster indirect calls and use unscaled index address modes.

Such code is suitable for level 0 PA systems and kernels.

-mfast-indirect-calls
Generate code that assumes calls never cross space boundaries. This allows GCC to emit code which performs faster indirect calls.

This option will not work in the presence of shared libraries or nested functions.

-mlong-load-store
Generate 3-instruction load and store sequences as sometimes required by the HP-UX 10 linker. This is equivalent to the +k option to the HP compilers.
-mportable-runtime
Use the portable calling conventions proposed by HP for ELF systems.
-mgas
Enable the use of assembler directives only GAS understands.
-mschedule=cpu-type
Schedule code according to the constraints for the machine type cpu-type. The choices for cpu-type are 700 7100, 7100LC, 7200, 7300 and 8000. Refer to /usr/lib/sched.models on an HP-UX system to determine the proper scheduling option for your machine. The default scheduling is 8000.
-mlinker-opt
Enable the optimization pass in the HP-UX linker. Note this makes symbolic debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9 linkers in which they give bogus error messages when linking some programs.
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries are not available for all HPPA targets. Normally the facilities of the machine's usual C compiler are used, but this cannot be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for cross-compilation. The embedded target hppa1.1-*-pro does provide software floating point support.

-msoft-float changes the calling convention in the output file; therefore, it is only useful if you compile all of a program with this option. In particular, you need to compile libgcc.a, the library that comes with GCC, with -msoft-float in order for this to work.

-msio
Generate the predefine, _SIO, for server IO. The default is -mwsio. This generates the predefines, __hp9000s700, __hp9000s700__ and _WSIO, for workstation IO. These options are available under HP-UX and HI-UX.
-mgnu-ld
Use GNU ld specific options. This passes -shared to ld when building a shared library. It is the default when GCC is configured, explicitly or implicitly, with the GNU linker. This option does not have any affect on which ld is called, it only changes what parameters are passed to that ld. The ld that is called is determined by the --with-ld configure option, gcc's program search path, and finally by the user's PATH. The linker used by GCC can be printed using which `gcc -print-prog-name=ld`.
-mhp-ld
Use HP ld specific options. This passes -b to ld when building a shared library and passes +Accept TypeMismatch to ld on all links. It is the default when GCC is configured, explicitly or implicitly, with the HP linker. This option does not have any affect on which ld is called, it only changes what parameters are passed to that ld. The ld that is called is determined by the --with-ld configure option, gcc's program search path, and finally by the user's PATH. The linker used by GCC can be printed using which `gcc -print-prog-name=ld`.
-mlong-calls
Generate code that uses long call sequences. This ensures that a call is always able to reach linker generated stubs. The default is to generate long calls only when the distance from the call site to the beginning of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are always limited at 240,000 bytes.

Distances are measured from the beginning of functions when using the -ffunction-sections option, or when using the -mgas and -mno-portable-runtime options together under HP-UX with the SOM linker.

It is normally not desirable to use this option as it will degrade performance. However, it may be useful in large applications, particularly when partial linking is used to build the application.

The types of long calls used depends on the capabilities of the assembler and linker, and the type of code being generated. The impact on systems that support long absolute calls, and long pic symbol-difference or pc-relative calls should be relatively small. However, an indirect call is used on 32-bit ELF systems in pic code and it is quite long.

-nolibdld
Suppress the generation of link options to search libdld.sl when the -static option is specified on HP-UX 10 and later.
-static
The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There isn't an archive version of libdld.sl. Thus, when the -static option is specified, special link options are needed to resolve this dependency.

On HP-UX 10 and later, the GCC driver adds the necessary options to link with libdld.sl when the -static option is specified. This causes the resulting binary to be dynamic. On the 64-bit port, the linkers generate dynamic binaries by default in any case. The -nolibdld option can be used to prevent the GCC driver from adding these link options.

-threads
Add support for multithreading with the dce thread library under HP-UX. This option sets flags for both the preprocessor and linker.


Next: , Previous: HPPA Options, Up: Submodel Options

3.17.16 Intel 960 Options

These -m options are defined for the Intel 960 implementations:

-mcpu-type
Assume the defaults for the machine type cpu-type for some of the other options, including instruction scheduling, floating point support, and addressing modes. The choices for cpu-type are ka, kb, mc, ca, cf, sa, and sb. The default is kb.
-mnumerics
-msoft-float
The -mnumerics option indicates that the processor does support floating-point instructions. The -msoft-float option indicates that floating-point support should not be assumed.
-mleaf-procedures
-mno-leaf-procedures
Do (or do not) attempt to alter leaf procedures to be callable with the bal instruction as well as call. This will result in more efficient code for explicit calls when the bal instruction can be substituted by the assembler or linker, but less efficient code in other cases, such as calls via function pointers, or using a linker that doesn't support this optimization.
-mtail-call
-mno-tail-call
Do (or do not) make additional attempts (beyond those of the machine-independent portions of the compiler) to optimize tail-recursive calls into branches. You may not want to do this because the detection of cases where this is not valid is not totally complete. The default is -mno-tail-call.
-mcomplex-addr
-mno-complex-addr
Assume (or do not assume) that the use of a complex addressing mode is a win on this implementation of the i960. Complex addressing modes may not be worthwhile on the K-series, but they definitely are on the C-series. The default is currently -mcomplex-addr for all processors except the CB and CC.
-mcode-align
-mno-code-align
Align code to 8-byte boundaries for faster fetching (or don't bother). Currently turned on by default for C-series implementations only.
-mic-compat
-mic2.0-compat
-mic3.0-compat
Enable compatibility with iC960 v2.0 or v3.0.
-masm-compat
-mintel-asm
Enable compatibility with the iC960 assembler.
-mstrict-align
-mno-strict-align
Do not permit (do permit) unaligned accesses.
-mold-align
Enable structure-alignment compatibility with Intel's gcc release version 1.3 (based on gcc 1.37). This option implies -mstrict-align.
-mlong-double-64
Implement type long double as 64-bit floating point numbers. Without the option long double is implemented by 80-bit floating point numbers. The only reason we have it because there is no 128-bit long double support in fp-bit.c yet. So it is only useful for people using soft-float targets. Otherwise, we should recommend against use of it.


Next: , Previous: Intel 960 Options, Up: Submodel Options

3.17.17 DEC Alpha Options

These -m options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float
Use (do not use) the hardware floating-point instructions for floating-point operations. When -msoft-float is specified, functions in libgcc.a will be used to perform floating-point operations. Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a way as to call such emulations routines, these routines will issue floating-point operations. If you are compiling for an Alpha without floating-point operations, you must ensure that the library is built so as not to call them.

Note that Alpha implementations without floating-point operations are required to have floating-point registers.

-mfp-reg
-mno-fp-regs
Generate code that uses (does not use) the floating-point register set. -mno-fp-regs implies -msoft-float. If the floating-point register set is not used, floating point operands are passed in integer registers as if they were integers and floating-point results are passed in $0 instead of $f0. This is a non-standard calling sequence, so any function with a floating-point argument or return value called by code compiled with -mno-fp-regs must also be compiled with that option.

A typical use of this option is building a kernel that does not use, and hence need not save and restore, any floating-point registers.

-mieee
The Alpha architecture implements floating-point hardware optimized for maximum performance. It is mostly compliant with the IEEE floating point standard. However, for full compliance, software assistance is required. This option generates code fully IEEE compliant code except that the inexact-flag is not maintained (see below). If this option is turned on, the preprocessor macro _IEEE_FP is defined during compilation. The resulting code is less efficient but is able to correctly support denormalized numbers and exceptional IEEE values such as not-a-number and plus/minus infinity. Other Alpha compilers call this option -ieee_with_no_inexact.
-mieee-with-inexact
This is like -mieee except the generated code also maintains the IEEE inexact-flag. Turning on this option causes the generated code to implement fully-compliant IEEE math. In addition to _IEEE_FP, _IEEE_FP_EXACT is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute significantly slower than the code generated by default. Since there is very little code that depends on the inexact-flag, you should normally not specify this option. Other Alpha compilers call this option -ieee_with_inexact.
-mfp-trap-mode=trap-mode
This option controls what floating-point related traps are enabled. Other Alpha compilers call this option -fptm trap-mode. The trap mode can be set to one of four values:
n
This is the default (normal) setting. The only traps that are enabled are the ones that cannot be disabled in software (e.g., division by zero trap).
u
In addition to the traps enabled by n, underflow traps are enabled as well.
su
Like su, but the instructions are marked to be safe for software completion (see Alpha architecture manual for details).
sui
Like su, but inexact traps are enabled as well.

-mfp-rounding-mode=rounding-mode
Selects the IEEE rounding mode. Other Alpha compilers call this option -fprm rounding-mode. The rounding-mode can be one of:
n
Normal IEEE rounding mode. Floating point numbers are rounded towards the nearest machine number or towards the even machine number in case of a tie.
m
Round towards minus infinity.
c
Chopped rounding mode. Floating point numbers are rounded towards zero.
d
Dynamic rounding mode. A field in the floating point control register (fpcr, see Alpha architecture reference manual) controls the rounding mode in effect. The C library initializes this register for rounding towards plus infinity. Thus, unless your program modifies the fpcr, d corresponds to round towards plus infinity.

-mtrap-precision=trap-precision
In the Alpha architecture, floating point traps are imprecise. This means without software assistance it is impossible to recover from a floating trap and program execution normally needs to be terminated. GCC can generate code that can assist operating system trap handlers in determining the exact location that caused a floating point trap. Depending on the requirements of an application, different levels of precisions can be selected:
p
Program precision. This option is the default and means a trap handler can only identify which program caused a floating point exception.
f
Function precision. The trap handler can determine the function that caused a floating point exception.
i
Instruction precision. The trap handler can determine the exact instruction that caused a floating point exception.

Other Alpha compilers provide the equivalent options called -scope_safe and -resumption_safe.

-mieee-conformant
This option marks the generated code as IEEE conformant. You must not use this option unless you also specify -mtrap-precision=i and either -mfp-trap-mode=su or -mfp-trap-mode=sui. Its only effect is to emit the line .eflag 48 in the function prologue of the generated assembly file. Under DEC Unix, this has the effect that IEEE-conformant math library routines will be linked in.
-mbuild-constants
Normally GCC examines a 32- or 64-bit integer constant to see if it can construct it from smaller constants in two or three instructions. If it cannot, it will output the constant as a literal and generate code to load it from the data segment at runtime.

Use this option to require GCC to construct all integer constants using code, even if it takes more instructions (the maximum is six).

You would typically use this option to build a shared library dynamic loader. Itself a shared library, it must relocate itself in memory before it can find the variables and constants in its own data segment.

-malpha-as
-mgas
Select whether to generate code to be assembled by the vendor-supplied assembler (-malpha-as) or by the GNU assembler -mgas.
-mbwx
-mno-bwx
-mcix
-mno-cix
-mfix
-mno-fix
-mmax
-mno-max
Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and MAX instruction sets. The default is to use the instruction sets supported by the CPU type specified via -mcpu= option or that of the CPU on which GCC was built if none was specified.
-mfloat-vax
-mfloat-ieee
Generate code that uses (does not use) VAX F and G floating point arithmetic instead of IEEE single and double precision.
-mexplicit-relocs
-mno-explicit-relocs
Older Alpha assemblers provided no way to generate symbol relocations except via assembler macros. Use of these macros does not allow optimal instruction scheduling. GNU binutils as of version 2.12 supports a new syntax that allows the compiler to explicitly mark which relocations should apply to which instructions. This option is mostly useful for debugging, as GCC detects the capabilities of the assembler when it is built and sets the default accordingly.
-msmall-data
-mlarge-data
When -mexplicit-relocs is in effect, static data is accessed via gp-relative relocations. When -msmall-data is used, objects 8 bytes long or smaller are placed in a small data area (the .sdata and .sbss sections) and are accessed via 16-bit relocations off of the $gp register. This limits the size of the small data area to 64KB, but allows the variables to be directly accessed via a single instruction.

The default is -mlarge-data. With this option the data area is limited to just below 2GB. Programs that require more than 2GB of data must use malloc or mmap to allocate the data in the heap instead of in the program's data segment.

When generating code for shared libraries, -fpic implies -msmall-data and -fPIC implies -mlarge-data.

-mcpu=cpu_type
Set the instruction set and instruction scheduling parameters for machine type cpu_type. You can specify either the EV style name or the corresponding chip number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family of processors and will choose the default values for the instruction set from the processor you specify. If you do not specify a processor type, GCC will default to the processor on which the compiler was built.

Supported values for cpu_type are

ev4
ev45
21064
Schedules as an EV4 and has no instruction set extensions.
ev5
21164
Schedules as an EV5 and has no instruction set extensions.
ev56
21164a
Schedules as an EV5 and supports the BWX extension.
pca56
21164pc
21164PC
Schedules as an EV5 and supports the BWX and MAX extensions.
ev6
21264
Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
ev67
21264a
Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.

-mtune=cpu_type
Set only the instruction scheduling parameters for machine type cpu_type. The instruction set is not changed.
-mmemory-latency=time
Sets the latency the scheduler should assume for typical memory references as seen by the application. This number is highly dependent on the memory access patterns used by the application and the size of the external cache on the machine.

Valid options for time are

number
A decimal number representing clock cycles.
L1
L2
L3
main
The compiler contains estimates of the number of clock cycles for “typical” EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. Note that L3 is only valid for EV5.


Next: , Previous: DEC Alpha Options, Up: Submodel Options

3.17.18 DEC Alpha/VMS Options

These -m options are defined for the DEC Alpha/VMS implementations:

-mvms-return-codes
Return VMS condition codes from main. The default is to return POSIX style condition (e.g. error) codes.


Next: , Previous: DEC Alpha/VMS Options, Up: Submodel Options

3.17.19 H8/300 Options

These -m options are defined for the H8/300 implementations:

-mrelax
Shorten some address references at link time, when possible; uses the linker option -relax. See ld and the H8/300 (Using ld), for a fuller description.
-mh
Generate code for the H8/300H.
-ms
Generate code for the H8S.
-mn
Generate code for the H8S and H8/300H in the normal mode. This switch must be used either with -mh or -ms.
-ms2600
Generate code for the H8S/2600. This switch must be used with -ms.
-mint32
Make int data 32 bits by default.
-malign-300
On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default for the H8/300H and H8S is to align longs and floats on 4 byte boundaries. -malign-300 causes them to be aligned on 2 byte boundaries. This option has no effect on the H8/300.


Next: , Previous: H8/300 Options, Up: Submodel Options

3.17.20 SH Options

These -m options are defined for the SH implementations:

-m1
Generate code for the SH1.
-m2
Generate code for the SH2.
-m3
Generate code for the SH3.
-m3e
Generate code for the SH3e.
-m4-nofpu
Generate code for the SH4 without a floating-point unit.
-m4-single-only
Generate code for the SH4 with a floating-point unit that only supports single-precision arithmetic.
-m4-single
Generate code for the SH4 assuming the floating-point unit is in single-precision mode by default.
-m4
Generate code for the SH4.
-mb
Compile code for the processor in big endian mode.
-ml
Compile code for the processor in little endian mode.
-mdalign
Align doubles at 64-bit boundaries. Note that this changes the calling conventions, and thus some functions from the standard C library will not work unless you recompile it first with -mdalign.
-mrelax
Shorten some address references at link time, when possible; uses the linker option -relax.
-mbigtable
Use 32-bit offsets in switch tables. The default is to use 16-bit offsets.
-mfmovd
Enable the use of the instruction fmovd.
-mhitachi
Comply with the calling conventions defined by Renesas.
-mnomacsave
Mark the MAC register as call-clobbered, even if -mhitachi is given.
-mieee
Increase IEEE-compliance of floating-point code.
-misize
Dump instruction size and location in the assembly code.
-mpadstruct
This option is deprecated. It pads structures to multiple of 4 bytes, which is incompatible with the SH ABI.
-mspace
Optimize for space instead of speed. Implied by -Os.
-mprefergot
When generating position-independent code, emit function calls using the Global Offset Table instead of the Procedure Linkage Table.
-musermode
Generate a library function call to invalidate instruction cache entries, after fixing up a trampoline. This library function call doesn't assume it can write to the whole memory address space. This is the default when the target is sh-*-linux*.


Next: , Previous: SH Options, Up: Submodel Options

3.17.21 Options for System V

These additional options are available on System V Release 4 for compatibility with other compilers on those systems:

-G
Create a shared object. It is recommended that -symbolic or -shared be used instead.
-Qy
Identify the versions of each tool used by the compiler, in a .ident assembler directive in the output.
-Qn
Refrain from adding .ident directives to the output file (this is the default).
-YP,dirs
Search the directories dirs, and no others, for libraries specified with -l.
-Ym,dir
Look in the directory dir to find the M4 preprocessor. The assembler uses this option.


Next: , Previous: System V Options, Up: Submodel Options

3.17.22 TMS320C3x/C4x Options

These -m options are defined for TMS320C3x/C4x implementations:

-mcpu=cpu_type
Set the instruction set, register set, and instruction scheduling parameters for machine type cpu_type. Supported values for cpu_type are c30, c31, c32, c40, and c44. The default is c40 to generate code for the TMS320C40.
-mbig-memory
-mbig
-msmall-memory
-msmall
Generates code for the big or small memory model. The small memory model assumed that all data fits into one 64K word page. At run-time the data page (DP) register must be set to point to the 64K page containing the .bss and .data program sections. The big memory model is the default and requires reloading of the DP register for every direct memory access.
-mbk
-mno-bk
Allow (disallow) allocation of general integer operands into the block count register BK.
-mdb
-mno-db
Enable (disable) generation of code using decrement and branch, DBcond(D), instructions. This is enabled by default for the C4x. To be on the safe side, this is disabled for the C3x, since the maximum iteration count on the C3x is 2^23 + 1 (but who iterates loops more than 2^23 times on the C3x?). Note that GCC will try to reverse a loop so that it can utilize the decrement and branch instruction, but will give up if there is more than one memory reference in the loop. Thus a loop where the loop counter is decremented can generate slightly more efficient code, in cases where the RPTB instruction cannot be utilized.
-mdp-isr-reload
-mparanoid
Force the DP register to be saved on entry to an interrupt service routine (ISR), reloaded to point to the data section, and restored on exit from the ISR. This should not be required unless someone has violated the small memory model by modifying the DP register, say within an object library.
-mmpyi
-mno-mpyi
For the C3x use the 24-bit MPYI instruction for integer multiplies instead of a library call to guarantee 32-bit results. Note that if one of the operands is a constant, then the multiplication will be performed using shifts and adds. If the -mmpyi option is not specified for the C3x, then squaring operations are performed inline instead of a library call.
-mfast-fix
-mno-fast-fix
The C3x/C4x FIX instruction to convert a floating point value to an integer value chooses the nearest integer less than or equal to the floating point value rather than to the nearest integer. Thus if the floating point number is negative, the result will be incorrectly truncated an additional code is necessary to detect and correct this case. This option can be used to disable generation of the additional code required to correct the result.
-mrptb
-mno-rptb
Enable (disable) generation of repeat block sequences using the RPTB instruction for zero overhead looping. The RPTB construct is only used for innermost loops that do not call functions or jump across the loop boundaries. There is no advantage having nested RPTB loops due to the overhead required to save and restore the RC, RS, and RE registers. This is enabled by default with -O2.
-mrpts=count
-mno-rpts
Enable (disable) the use of the single instruction repeat instruction RPTS. If a repeat block contains a single instruction, and the loop count can be guaranteed to be less than the value count, GCC will emit a RPTS instruction instead of a RPTB. If no value is specified, then a RPTS will be emitted even if the loop count cannot be determined at compile time. Note that the repeated instruction following RPTS does not have to be reloaded from memory each iteration, thus freeing up the CPU buses for operands. However, since interrupts are blocked by this instruction, it is disabled by default.
-mloop-unsigned
-mno-loop-unsigned
The maximum iteration count when using RPTS and RPTB (and DB on the C40) is 2^31 + 1 since these instructions test if the iteration count is negative to terminate the loop. If the iteration count is unsigned there is a possibility than the 2^31 + 1 maximum iteration count may be exceeded. This switch allows an unsigned iteration count.
-mti
Try to emit an assembler syntax that the TI assembler (asm30) is happy with. This also enforces compatibility with the API employed by the TI C3x C compiler. For example, long doubles are passed as structures rather than in floating point registers.
-mregparm
-mmemparm
Generate code that uses registers (stack) for passing arguments to functions. By default, arguments are passed in registers where possible rather than by pushing arguments on to the stack.
-mparallel-insns
-mno-parallel-insns
Allow the generation of parallel instructions. This is enabled by default with -O2.
-mparallel-mpy
-mno-parallel-mpy
Allow the generation of MPY||ADD and MPY||SUB parallel instructions, provided -mparallel-insns is also specified. These instructions have tight register constraints which can pessimize the code generation of large functions.


Next: , Previous: TMS320C3x/C4x Options, Up: Submodel Options

3.17.23 V850 Options

These -m options are defined for V850 implementations:

-mlong-calls
-mno-long-calls
Treat all calls as being far away (near). If calls are assumed to be far away, the compiler will always load the functions address up into a register, and call indirect through the pointer.
-mno-ep
-mep
Do not optimize (do optimize) basic blocks that use the same index pointer 4 or more times to copy pointer into the ep register, and use the shorter sld and sst instructions. The -mep option is on by default if you optimize.
-mno-prolog-function
-mprolog-function
Do not use (do use) external functions to save and restore registers at the prologue and epilogue of a function. The external functions are slower, but use less code space if more than one function saves the same number of registers. The -mprolog-function option is on by default if you optimize.
-mspace
Try to make the code as small as possible. At present, this just turns on the -mep and -mprolog-function options.
-mtda=n
Put static or global variables whose size is n bytes or less into the tiny data area that register ep points to. The tiny data area can hold up to 256 bytes in total (128 bytes for byte references).
-msda=n
Put static or global variables whose size is n bytes or less into the small data area that register gp points to. The small data area can hold up to 64 kilobytes.
-mzda=n
Put static or global variables whose size is n bytes or less into the first 32 kilobytes of memory.
-mv850
Specify that the target processor is the V850.
-mbig-switch
Generate code suitable for big switch tables. Use this option only if the assembler/linker complain about out of range branches within a switch table.
-mapp-regs
This option will cause r2 and r5 to be used in the code generated by the compiler. This setting is the default.
-mno-app-regs
This option will cause r2 and r5 to be treated as fixed registers.
-mv850e
Specify that the target processor is the V850E. The preprocessor constant __v850e__ will be defined if this option is used.

If neither -mv850 nor -mv850e are defined then a default target processor will be chosen and the relevant __v850*__ preprocessor constant will be defined.

The preprocessor constants __v850 and __v851__ are always defined, regardless of which processor variant is the target.

-mdisable-callt
This option will suppress generation of the CALLT instruction for the v850e flavors of the v850 architecture. The default is -mno-disable-callt which allows the CALLT instruction to be used.


Next: , Previous: V850 Options, Up: Submodel Options

3.17.24 ARC Options

These options are defined for ARC implementations:

-EL
Compile code for little endian mode. This is the default.
-EB
Compile code for big endian mode.
-mmangle-cpu
Prepend the name of the cpu to all public symbol names. In multiple-processor systems, there are many ARC variants with different instruction and register set characteristics. This flag prevents code compiled for one cpu to be linked with code compiled for another. No facility exists for handling variants that are “almost identical”. This is an all or nothing option.
-mcpu=cpu
Compile code for ARC variant cpu. Which variants are supported depend on the configuration. All variants support -mcpu=base, this is the default.
-mtext=text-section
-mdata=data-section
-mrodata=readonly-data-section
Put functions, data, and readonly data in text-section, data-section, and readonly-data-section respectively by default. This can be overridden with the section attribute. See Variable Attributes.


Next: , Previous: ARC Options, Up: Submodel Options

3.17.25 NS32K Options

These are the -m options defined for the 32000 series. The default values for these options depends on which style of 32000 was selected when the compiler was configured; the defaults for the most common choices are given below.

-m32032
-m32032
Generate output for a 32032. This is the default when the compiler is configured for 32032 and 32016 based systems.
-m32332
-m32332
Generate output for a 32332. This is the default when the compiler is configured for 32332-based systems.
-m32532
-m32532
Generate output for a 32532. This is the default when the compiler is configured for 32532-based systems.
-m32081
Generate output containing 32081 instructions for floating point. This is the default for all systems.
-m32381
Generate output containing 32381 instructions for floating point. This also implies -m32081. The 32381 is only compatible with the 32332 and 32532 cpus. This is the default for the pc532-netbsd configuration.
-mmulti-add
Try and generate multiply-add floating point instructions polyF and dotF. This option is only available if the -m32381 option is in effect. Using these instructions requires changes to register allocation which generally has a negative impact on performance. This option should only be enabled when compiling code particularly likely to make heavy use of multiply-add instructions.
-mnomulti-add
Do not try and generate multiply-add floating point instructions polyF and dotF. This is the default on all platforms.
-msoft-float
Generate output containing library calls for floating point. Warning: the requisite libraries may not be available.
-mieee-compare
-mno-ieee-compare
Control whether or not the compiler uses IEEE floating point comparisons. These handle correctly the case where the result of a comparison is unordered. Warning: the requisite kernel support may not be available.
-mnobitfield
Do not use the bit-field instructions. On some machines it is faster to use shifting and masking operations. This is the default for the pc532.
-mbitfield
Do use the bit-field instructions. This is the default for all platforms except the pc532.
-mrtd
Use a different function-calling convention, in which functions that take a fixed number of arguments return pop their arguments on return with the ret instruction.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers of arguments (including printf); otherwise incorrect code will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.)

This option takes its name from the 680x0 rtd instruction.

-mregparam
Use a different function-calling convention where the first two arguments are passed in registers.

This calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler.

-mnoregparam
Do not pass any arguments in registers. This is the default for all targets.
-msb
It is OK to use the sb as an index register which is always loaded with zero. This is the default for the pc532-netbsd target.
-mnosb
The sb register is not available for use or has not been initialized to zero by the run time system. This is the default for all targets except the pc532-netbsd. It is also implied whenever -mhimem or -fpic is set.
-mhimem
Many ns32000 series addressing modes use displacements of up to 512MB. If an address is above 512MB then displacements from zero can not be used. This option causes code to be generated which can be loaded above 512MB. This may be useful for operating systems or ROM code.
-mnohimem
Assume code will be loaded in the first 512MB of virtual address space. This is the default for all platforms.


Next: , Previous: NS32K Options, Up: Submodel Options

3.17.26 AVR Options

These options are defined for AVR implementations:

-mmcu=mcu
Specify ATMEL AVR instruction set or MCU type.

Instruction set avr1 is for the minimal AVR core, not supported by the C compiler, only for assembler programs (MCU types: at90s1200, attiny10, attiny11, attiny12, attiny15, attiny28).

Instruction set avr2 (default) is for the classic AVR core with up to 8K program memory space (MCU types: at90s2313, at90s2323, attiny22, at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, at90c8534, at90s8535).

Instruction set avr3 is for the classic AVR core with up to 128K program memory space (MCU types: atmega103, atmega603, at43usb320, at76c711).

Instruction set avr4 is for the enhanced AVR core with up to 8K program memory space (MCU types: atmega8, atmega83, atmega85).

Instruction set avr5 is for the enhanced AVR core with up to 128K program memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323, atmega64, atmega128, at43usb355, at94k).

-msize
Output instruction sizes to the asm file.
-minit-stack=N
Specify the initial stack address, which may be a symbol or numeric value, __stack is the default.
-mno-interrupts
Generated code is not compatible with hardware interrupts. Code size will be smaller.
-mcall-prologues
Functions prologues/epilogues expanded as call to appropriate subroutines. Code size will be smaller.
-mno-tablejump
Do not generate tablejump insns which sometimes increase code size.
-mtiny-stack
Change only the low 8 bits of the stack pointer.


Next: , Previous: AVR Options, Up: Submodel Options

3.17.27 MCore Options

These are the -m options defined for the Motorola M*Core processors.

-mhardlit
-mno-hardlit
Inline constants into the code stream if it can be done in two instructions or less.
-mdiv
-mno-div
Use the divide instruction. (Enabled by default).
-mrelax-immediate
-mno-relax-immediate
Allow arbitrary sized immediates in bit operations.
-mwide-bitfields
-mno-wide-bitfields
Always treat bit-fields as int-sized.
-m4byte-functions
-mno-4byte-functions
Force all functions to be aligned to a four byte boundary.
-mcallgraph-data
-mno-callgraph-data
Emit callgraph information.
-mslow-bytes
-mno-slow-bytes
Prefer word access when reading byte quantities.
-mlittle-endian
-mbig-endian
Generate code for a little endian target.
-m210
-m340
Generate code for the 210 processor.


Next: , Previous: MCore Options, Up: Submodel Options

3.17.28 IA-64 Options

These are the -m options defined for the Intel IA-64 architecture.

-mbig-endian
Generate code for a big endian target. This is the default for HP-UX.
-mlittle-endian
Generate code for a little endian target. This is the default for AIX5 and Linux.
-mgnu-as
-mno-gnu-as
Generate (or don't) code for the GNU assembler. This is the default.
-mgnu-ld
-mno-gnu-ld
Generate (or don't) code for the GNU linker. This is the default.
-mno-pic
Generate code that does not use a global pointer register. The result is not position independent code, and violates the IA-64 ABI.
-mvolatile-asm-stop
-mno-volatile-asm-stop
Generate (or don't) a stop bit immediately before and after volatile asm statements.
-mb-step
Generate code that works around Itanium B step errata.
-mregister-names
-mno-register-names
Generate (or don't) in, loc, and out register names for the stacked registers. This may make assembler output more readable.
-mno-sdata
-msdata
Disable (or enable) optimizations that use the small data section. This may be useful for working around optimizer bugs.
-mconstant-gp
Generate code that uses a single constant global pointer value. This is useful when compiling kernel code.
-mauto-pic
Generate code that is self-relocatable. This implies -mconstant-gp. This is useful when compiling firmware code.
-minline-float-divide-min-latency
Generate code for inline divides of floating point values using the minimum latency algorithm.
-minline-float-divide-max-throughput
Generate code for inline divides of floating point values using the maximum throughput algorithm.
-minline-int-divide-min-latency
Generate code for inline divides of integer values using the minimum latency algorithm.
-minline-int-divide-max-throughput
Generate code for inline divides of integer values using the maximum throughput algorithm.
-mno-dwarf2-asm
-mdwarf2-asm
Don't (or do) generate assembler code for the DWARF2 line number debugging info. This may be useful when not using the GNU assembler.
-mfixed-range=register-range
Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator can not use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma.


Next: , Previous: IA-64 Options, Up: Submodel Options

3.17.29 D30V Options

These -m options are defined for D30V implementations:

-mextmem
Link the .text, .data, .bss, .strings, .rodata, .rodata1, .data1 sections into external memory, which starts at location 0x80000000.
-mextmemory
Same as the -mextmem switch.
-monchip
Link the .text section into onchip text memory, which starts at location 0x0. Also link .data, .bss, .strings, .rodata, .rodata1, .data1 sections into onchip data memory, which starts at location 0x20000000.
-mno-asm-optimize
-masm-optimize
Disable (enable) passing -O to the assembler when optimizing. The assembler uses the -O option to automatically parallelize adjacent short instructions where possible.
-mbranch-cost=n
Increase the internal costs of branches to n. Higher costs means that the compiler will issue more instructions to avoid doing a branch. The default is 2.
-mcond-exec=n
Specify the maximum number of conditionally executed instructions that replace a branch. The default is 4.


Next: , Previous: D30V Options, Up: Submodel Options

3.17.30 S/390 and zSeries Options

These are the -m options defined for the S/390 and zSeries architecture.

-mhard-float
-msoft-float
Use (do not use) the hardware floating-point instructions and registers for floating-point operations. When -msoft-float is specified, functions in libgcc.a will be used to perform floating-point operations. When -mhard-float is specified, the compiler generates IEEE floating-point instructions. This is the default.
-mbackchain
-mno-backchain
Generate (or do not generate) code which maintains an explicit backchain within the stack frame that points to the caller's frame. This is currently needed to allow debugging. The default is to generate the backchain.
-msmall-exec
-mno-small-exec
Generate (or do not generate) code using the bras instruction to do subroutine calls. This only works reliably if the total executable size does not exceed 64k. The default is to use the basr instruction instead, which does not have this limitation.
-m64
-m31
When -m31 is specified, generate code compliant to the Linux for S/390 ABI. When -m64 is specified, generate code compliant to the Linux for zSeries ABI. This allows GCC in particular to generate 64-bit instructions. For the s390 targets, the default is -m31, while the s390x targets default to -m64.
-mmvcle
-mno-mvcle
Generate (or do not generate) code using the mvcle instruction to perform block moves. When -mno-mvcle is specified, use a mvc loop instead. This is the default.
-mdebug
-mno-debug
Print (or do not print) additional debug information when compiling. The default is to not print debug information.


Next: , Previous: S/390 and zSeries Options, Up: Submodel Options

3.17.31 CRIS Options

These options are defined specifically for the CRIS ports.

-march=architecture-type
-mcpu=architecture-type
Generate code for the specified architecture. The choices for architecture-type are v3, v8 and v10 for respectively ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is v0 except for cris-axis-linux-gnu, where the default is v10.
-mtune=architecture-type
Tune to architecture-type everything applicable about the generated code, except for the ABI and the set of available instructions. The choices for architecture-type are the same as for -march=architecture-type.
-mmax-stack-frame=n
Warn when the stack frame of a function exceeds n bytes.
-melinux-stacksize=n
Only available with the cris-axis-aout target. Arranges for indications in the program to the kernel loader that the stack of the program should be set to n bytes.
-metrax4
-metrax100
The options -metrax4 and -metrax100 are synonyms for -march=v3 and -march=v8 respectively.
-mmul-bug-workaround
-mno-mul-bug-workaround
Work around a bug in the muls and mulu instructions for CPU models where it applies. This option is active by default.
-mpdebug
Enable CRIS-specific verbose debug-related information in the assembly code. This option also has the effect to turn off the #NO_APP formatted-code indicator to the assembler at the beginning of the assembly file.
-mcc-init
Do not use condition-code results from previous instruction; always emit compare and test instructions before use of condition codes.
-mno-side-effects
Do not emit instructions with side-effects in addressing modes other than post-increment.
-mstack-align
-mno-stack-align
-mdata-align
-mno-data-align
-mconst-align
-mno-const-align
These options (no-options) arranges (eliminate arrangements) for the stack-frame, individual data and constants to be aligned for the maximum single data access size for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI details such as structure layout are not affected by these options.
-m32-bit
-m16-bit
-m8-bit
Similar to the stack- data- and const-align options above, these options arrange for stack-frame, writable data and constants to all be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit alignment.
-mno-prologue-epilogue
-mprologue-epilogue
With -mno-prologue-epilogue, the normal function prologue and epilogue that sets up the stack-frame are omitted and no return instructions or return sequences are generated in the code. Use this option only together with visual inspection of the compiled code: no warnings or errors are generated when call-saved registers must be saved, or storage for local variable needs to be allocated.
-mno-gotplt
-mgotplt
With -fpic and -fPIC, don't generate (do generate) instruction sequences that load addresses for functions from the PLT part of the GOT rather than (traditional on other architectures) calls to the PLT. The default is -mgotplt.
-maout
Legacy no-op option only recognized with the cris-axis-aout target.
-melf
Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu targets.
-melinux
Only recognized with the cris-axis-aout target, where it selects a GNU/linux-like multilib, include files and instruction set for -march=v8.
-mlinux
Legacy no-op option only recognized with the cris-axis-linux-gnu target.
-sim
This option, recognized for the cris-axis-aout and cris-axis-elf arranges to link with input-output functions from a simulator library. Code, initialized data and zero-initialized data are allocated consecutively.
-sim2
Like -sim, but pass linker options to locate initialized data at 0x40000000 and zero-initialized data at 0x80000000.


Next: , Previous: CRIS Options, Up: Submodel Options

3.17.32 MMIX Options

These options are defined for the MMIX:

-mlibfuncs
-mno-libfuncs
Specify that intrinsic library functions are being compiled, passing all values in registers, no matter the size.
-mepsilon
-mno-epsilon
Generate floating-point comparison instructions that compare with respect to the rE epsilon register.
-mabi=mmixware
-mabi=gnu
Generate code that passes function parameters and return values that (in the called function) are seen as registers $0 and up, as opposed to the GNU ABI which uses global registers $231 and up.
-mzero-extend
-mno-zero-extend
When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-extending load instructions by default, rather than sign-extending ones.
-mknuthdiv
-mno-knuthdiv
Make the result of a division yielding a remainder have the same sign as the divisor. With the default, -mno-knuthdiv, the sign of the remainder follows the sign of the dividend. Both methods are arithmetically valid, the latter being almost exclusively used.
-mtoplevel-symbols
-mno-toplevel-symbols
Prepend (do not prepend) a : to all global symbols, so the assembly code can be used with the PREFIX assembly directive.
-melf
Generate an executable in the ELF format, rather than the default mmo format used by the mmix simulator.
-mbranch-predict
-mno-branch-predict
Use (do not use) the probable-branch instructions, when static branch prediction indicates a probable branch.
-mbase-addresses
-mno-base-addresses
Generate (do not generate) code that uses base addresses. Using a base address automatically generates a request (handled by the assembler and the linker) for a constant to be set up in a global register. The register is used for one or more base address requests within the range 0 to 255 from the value held in the register. The generally leads to short and fast code, but the number of different data items that can be addressed is limited. This means that a program that uses lots of static data may require -mno-base-addresses.
-msingle-exit
-mno-single-exit
Force (do not force) generated code to have a single exit point in each function.


Next: , Previous: MMIX Options, Up: Submodel Options

3.17.33 PDP-11 Options

These options are defined for the PDP-11:

-mfpu
Use hardware FPP floating point. This is the default. (FIS floating point on the PDP-11/40 is not supported.)
-msoft-float
Do not use hardware floating point.
-mac0
Return floating-point results in ac0 (fr0 in Unix assembler syntax).
-mno-ac0
Return floating-point results in memory. This is the default.
-m40
Generate code for a PDP-11/40.
-m45
Generate code for a PDP-11/45. This is the default.
-m10
Generate code for a PDP-11/10.
-mbcopy-builtin
Use inline movstrhi patterns for copying memory. This is the default.
-mbcopy
Do not use inline movstrhi patterns for copying memory.
-mint16
-mno-int32
Use 16-bit int. This is the default.
-mint32
-mno-int16
Use 32-bit int.
-mfloat64
-mno-float32
Use 64-bit float. This is the default.
-mfloat32
-mno-float64
Use 32-bit float.
-mabshi
Use abshi2 pattern. This is the default.
-mno-abshi
Do not use abshi2 pattern.
-mbranch-expensive
Pretend that branches are expensive. This is for experimenting with code generation only.
-mbranch-cheap
Do not pretend that branches are expensive. This is the default.
-msplit
Generate code for a system with split I&D.
-mno-split
Generate code for a system without split I&D. This is the default.
-munix-asm
Use Unix assembler syntax. This is the default when configured for pdp11-*-bsd.
-mdec-asm
Use DEC assembler syntax. This is the default when configured for any PDP-11 target other than pdp11-*-bsd.


Next: , Previous: PDP-11 Options, Up: Submodel Options

3.17.34 Xstormy16 Options

These options are defined for Xstormy16:

-msim
Choose startup files and linker script suitable for the simulator.


Previous: Xtensa Options, Up: Submodel Options

3.17.35 FRV Options

-mgpr-32
Only use the first 32 general purpose registers.
-mgpr-64
Use all 64 general purpose registers.
-mfpr-32
Use only the first 32 floating point registers.
-mfpr-64
Use all 64 floating point registers
-mhard-float
Use hardware instructions for floating point operations.
-msoft-float
Use library routines for floating point operations.
-malloc-cc
Dynamically allocate condition code registers.
-mfixed-cc
Do not try to dynamically allocate condition code registers, only use icc0 and fcc0.
-mdword
Change ABI to use double word insns.
-mno-dword
Do not use double word instructions.
-mdouble
Use floating point double instructions.
-mno-double
Do not use floating point double instructions.
-mmedia
Use media instructions.
-mno-media
Do not use media instructions.
-mmuladd
Use multiply and add/subtract instructions.
-mno-muladd
Do not use multiply and add/subtract instructions.
-mlibrary-pic
Enable PIC support for building libraries
-macc-4
Use only the first four media accumulator registers.
-macc-8
Use all eight media accumulator registers.
-mpack
Pack VLIW instructions.
-mno-pack
Do not pack VLIW instructions.
-mno-eflags
Do not mark ABI switches in e_flags.
-mcond-move
Enable the use of conditional-move instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mno-cond-move
Disable the use of conditional-move instructions.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mscc
Enable the use of conditional set instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mno-scc
Disable the use of conditional set instructions.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mcond-exec
Enable the use of conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mno-cond-exec
Disable the use of conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mvliw-branch
Run a pass to pack branches into VLIW instructions (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mno-vliw-branch
Do not run a pass to pack branches into VLIW instructions.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mmulti-cond-exec
Enable optimization of && and || in conditional execution (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mno-multi-cond-exec
Disable optimization of && and || in conditional execution.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mnested-cond-exec
Enable nested conditional execution optimizations (default).

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mno-nested-cond-exec
Disable nested conditional execution optimizations.

This switch is mainly for debugging the compiler and will likely be removed in a future version.

-mtomcat-stats
Cause gas to print out tomcat statistics.
-mcpu=cpu
Select the processor type for which to generate code. Possible values are simple, tomcat, fr500, fr400, fr300, frv.


Next: , Previous: Xstormy16 Options, Up: Submodel Options

3.17.36 Xtensa Options

The Xtensa architecture is designed to support many different configurations. The compiler's default options can be set to match a particular Xtensa configuration by copying a configuration file into the GCC sources when building GCC. The options below may be used to override the default options.

-mbig-endian
-mlittle-endian
Specify big-endian or little-endian byte ordering for the target Xtensa processor.
-mdensity
-mno-density
Enable or disable use of the optional Xtensa code density instructions.
-mmac16
-mno-mac16
Enable or disable use of the Xtensa MAC16 option. When enabled, GCC will generate MAC16 instructions from standard C code, with the limitation that it will use neither the MR register file nor any instruction that operates on the MR registers. When this option is disabled, GCC will translate 16-bit multiply/accumulate operations to a combination of core instructions and library calls, depending on whether any other multiplier options are enabled.
-mmul16
-mno-mul16
Enable or disable use of the 16-bit integer multiplier option. When enabled, the compiler will generate 16-bit multiply instructions for multiplications of 16 bits or smaller in standard C code. When this option is disabled, the compiler will either use 32-bit multiply or MAC16 instructions if they are available or generate library calls to perform the multiply operations using shifts and adds.
-mmul32
-mno-mul32
Enable or disable use of the 32-bit integer multiplier option. When enabled, the compiler will generate 32-bit multiply instructions for multiplications of 32 bits or smaller in standard C code. When this option is disabled, the compiler will generate library calls to perform the multiply operations using either shifts and adds or 16-bit multiply instructions if they are available.
-mnsa
-mno-nsa
Enable or disable use of the optional normalization shift amount (NSA) instructions to implement the built-in ffs function.
-mminmax
-mno-minmax
Enable or disable use of the optional minimum and maximum value instructions.
-msext
-mno-sext
Enable or disable use of the optional sign extend (SEXT) instruction.
-mbooleans
-mno-booleans
Enable or disable support for the boolean register file used by Xtensa coprocessors. This is not typically useful by itself but may be required for other options that make use of the boolean registers (e.g., the floating-point option).
-mhard-float
-msoft-float
Enable or disable use of the floating-point option. When enabled, GCC generates floating-point instructions for 32-bit float operations. When this option is disabled, GCC generates library calls to emulate 32-bit floating-point operations using integer instructions. Regardless of this option, 64-bit double operations are always emulated with calls to library functions.
-mfused-madd
-mno-fused-madd
Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point option. This has no effect if the floating-point option is not also enabled. Disabling fused multiply/add and multiply/subtract instructions forces the compiler to use separate instructions for the multiply and add/subtract operations. This may be desirable in some cases where strict IEEE 754-compliant results are required: the fused multiply add/subtract instructions do not round the intermediate result, thereby producing results with more bits of precision than specified by the IEEE standard. Disabling fused multiply add/subtract instructions also ensures that the program output is not sensitive to the compiler's ability to combine multiply and add/subtract operations.
-mserialize-volatile
-mno-serialize-volatile
When this option is enabled, GCC inserts MEMW instructions before volatile memory references to guarantee sequential consistency. The default is -mserialize-volatile. Use -mno-serialize-volatile to omit the MEMW instructions.
-mtext-section-literals
-mno-text-section-literals
Control the treatment of literal pools. The default is -mno-text-section-literals, which places literals in a separate section in the output file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With -mtext-section-literals, the literals are interspersed in the text section in order to keep them as close as possible to their references. This may be necessary for large assembly files.
-mtarget-align
-mno-target-align
When this option is enabled, GCC instructs the assembler to automatically align instructions to reduce branch penalties at the expense of some code density. The assembler attempts to widen density instructions to align branch targets and the instructions following call instructions. If there are not enough preceding safe density instructions to align a target, no widening will be performed. The default is -mtarget-align. These options do not affect the treatment of auto-aligned instructions like LOOP, which the assembler will always align, either by widening density instructions or by inserting no-op instructions.
-mlongcalls
-mno-longcalls
When this option is enabled, GCC instructs the assembler to translate direct calls to indirect calls unless it can determine that the target of a direct call is in the range allowed by the call instruction. This translation typically occurs for calls to functions in other source files. Specifically, the assembler translates a direct CALL instruction into an L32R followed by a CALLX instruction. The default is -mno-longcalls. This option should be used in programs where the call target can potentially be out of range. This option is implemented in the assembler, not the compiler, so the assembly code generated by GCC will still show direct call instructions—look at the disassembled object code to see the actual instructions. Note that the assembler will use an indirect call for every cross-file call, not just those that really will be out of range.


Next: , Previous: Submodel Options, Up: Invoking GCC

3.18 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed—the one which is not the default. You can figure out the other form by either removing no- or adding it.

-fbounds-check
For front-ends that support it, generate additional code to check that indices used to access arrays are within the declared range. This is currently only supported by the Java and Fortran 77 front-ends, where this option defaults to true and false respectively.
-ftrapv
This option generates traps for signed overflow on addition, subtraction, multiplication operations.
-fexceptions
Enable exception handling. Generates extra code needed to propagate exceptions. For some targets, this implies GCC will generate frame unwind information for all functions, which can produce significant data size overhead, although it does not affect execution. If you do not specify this option, GCC will enable it by default for languages like C++ which normally require exception handling, and disable it for languages like C that do not normally require it. However, you may need to enable this option when compiling C code that needs to interoperate properly with exception handlers written in C++. You may also wish to disable this option if you are compiling older C++ programs that don't use exception handling.
-fnon-call-exceptions
Generate code that allows trapping instructions to throw exceptions. Note that this requires platform-specific runtime support that does not exist everywhere. Moreover, it only allows trapping instructions to throw exceptions, i.e. memory references or floating point instructions. It does not allow exceptions to be thrown from arbitrary signal handlers such as SIGALRM.
-funwind-tables
Similar to -fexceptions, except that it will just generate any needed static data, but will not affect the generated code in any other way. You will normally not enable this option; instead, a language processor that needs this handling would enable it on your behalf.
-fasynchronous-unwind-tables
Generate unwind table in dwarf2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector).
-fpcc-struct-return
Return “short” struct and union values in memory like longer ones, rather than in registers. This convention is less efficient, but it has the advantage of allowing intercallability between GCC-compiled files and files compiled with other compilers, particularly the Portable C Compiler (pcc).

The precise convention for returning structures in memory depends on the target configuration macros.

Short structures and unions are those whose size and alignment match that of some integer type.

Warning: code compiled with the -fpcc-struct-return switch is not binary compatible with code compiled with the -freg-struct-return switch. Use it to conform to a non-default application binary interface.

-freg-struct-return
Return struct and union values in registers when possible. This is more efficient for small structures than -fpcc-struct-return.

If you specify neither -fpcc-struct-return nor -freg-struct-return, GCC defaults to whichever convention is standard for the target. If there is no standard convention, GCC defaults to -fpcc-struct-return, except on targets where GCC is the principal compiler. In those cases, we can choose the standard, and we chose the more efficient register return alternative.

Warning: code compiled with the -freg-struct-return switch is not binary compatible with code compiled with the -fpcc-struct-return switch. Use it to conform to a non-default application binary interface.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for the declared range of possible values. Specifically, the enum type will be equivalent to the smallest integer type which has enough room.

Warning: the -fshort-enums switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface.

-fshort-double
Use the same size for double as for float.

Warning: the -fshort-double switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface.

-fshort-wchar
Override the underlying type for wchar_t to be short unsigned int instead of the default for the target. This option is useful for building programs to run under WINE.

Warning: the -fshort-wchar switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface.

-fshared-data
Requests that the data and non-const variables of this compilation be shared data rather than private data. The distinction makes sense only on certain operating systems, where shared data is shared between processes running the same program, while private data exists in one copy per process.
-fno-common
In C, allocate even uninitialized global variables in the data section of the object file, rather than generating them as common blocks. This has the effect that if the same variable is declared (without extern) in two different compilations, you will get an error when you link them. The only reason this might be useful is if you wish to verify that the program will work on other systems which always work this way.
-fno-ident
Ignore the #ident directive.
-fno-gnu-linker
Do not output global initializations (such as C++ constructors and destructors) in the form used by the GNU linker (on systems where the GNU linker is the standard method of handling them). Use this option when you want to use a non-GNU linker, which also requires using the collect2 program to make sure the system linker includes constructors and destructors. (collect2 is included in the GCC distribution.) For systems which must use collect2, the compiler driver gcc is configured to do this automatically.
-finhibit-size-directive
Don't output a .size assembler directive, or anything else that would cause trouble if the function is split in the middle, and the two halves are placed at locations far apart in memory. This option is used when compiling crtstuff.c; you should not need to use it for anything else.
-fverbose-asm
Put extra commentary information in the generated assembly code to make it more readable. This option is generally only of use to those who actually need to read the generated assembly code (perhaps while debugging the compiler itself).

-fno-verbose-asm, the default, causes the extra information to be omitted and is useful when comparing two assembler files.

-fvolatile
Consider all memory references through pointers to be volatile.
-fvolatile-global
Consider all memory references to extern and global data items to be volatile. GCC does not consider static data items to be volatile because of this switch.
-fvolatile-static
Consider all memory references to static data to be volatile.
-fpic
Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table (GOT). The dynamic loader resolves the GOT entries when the program starts (the dynamic loader is not part of GCC; it is part of the operating system). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an error message from the linker indicating that -fpic does not work; in that case, recompile with -fPIC instead. (These maximums are 16k on the m88k, 8k on the SPARC, and 32k on the m68k and RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on certain machines. For the 386, GCC supports PIC for System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent.

-fPIC
If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, m88k, and the SPARC.

Position-independent code requires special support, and therefore works only on certain machines.

-ffixed-reg
Treat the register named reg as a fixed register; generated code should never refer to it (except perhaps as a stack pointer, frame pointer or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific and are defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocable register that is clobbered by function calls. It may be allocated for temporaries or variables that do not live across a call. Functions compiled this way will not save and restore the register reg.

It is an error to used this flag with the frame pointer or stack pointer. Use of this flag for other registers that have fixed pervasive roles in the machine's execution model will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocable register saved by functions. It may be allocated even for temporaries or variables that live across a call. Functions compiled this way will save and restore the register reg if they use it.

It is an error to used this flag with the frame pointer or stack pointer. Use of this flag for other registers that have fixed pervasive roles in the machine's execution model will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

-fpack-struct
Pack all structure members together without holes.

Warning: the -fpack-struct switch causes GCC to generate code that is not binary compatible with code generated without that switch. Additionally, it makes the code suboptimal. Use it to conform to a non-default application binary interface.

-finstrument-functions
Generate instrumentation calls for entry and exit to functions. Just after function entry and just before function exit, the following profiling functions will be called with the address of the current function and its call site. (On some platforms, __builtin_return_address does not work beyond the current function, so the call site information may not be available to the profiling functions otherwise.)
          void __cyg_profile_func_enter (void *this_fn,
                                         void *call_site);
          void __cyg_profile_func_exit  (void *this_fn,
                                         void *call_site);
     

The first argument is the address of the start of the current function, which may be looked up exactly in the symbol table.

This instrumentation is also done for functions expanded inline in other functions. The profiling calls will indicate where, conceptually, the inline function is entered and exited. This means that addressable versions of such functions must be available. If all your uses of a function are expanded inline, this may mean an additional expansion of code size. If you use extern inline in your C code, an addressable version of such functions must be provided. (This is normally the case anyways, but if you get lucky and the optimizer always expands the functions inline, you might have gotten away without providing static copies.)

A function may be given the attribute no_instrument_function, in which case this instrumentation will not be done. This can be used, for example, for the profiling functions listed above, high-priority interrupt routines, and any functions from which the profiling functions cannot safely be called (perhaps signal handlers, if the profiling routines generate output or allocate memory).

-fstack-check
Generate code to verify that you do not go beyond the boundary of the stack. You should specify this flag if you are running in an environment with multiple threads, but only rarely need to specify it in a single-threaded environment since stack overflow is automatically detected on nearly all systems if there is only one stack.

Note that this switch does not actually cause checking to be done; the operating system must do that. The switch causes generation of code to ensure that the operating system sees the stack being extended.

-fstack-limit-register=reg
-fstack-limit-symbol=sym
-fno-stack-limit
Generate code to ensure that the stack does not grow beyond a certain value, either the value of a register or the address of a symbol. If the stack would grow beyond the value, a signal is raised. For most targets, the signal is raised before the stack overruns the boundary, so it is possible to catch the signal without taking special precautions.

For instance, if the stack starts at absolute address 0x80000000 and grows downwards, you can use the flags -fstack-limit-symbol=__stack_limit and -Wl,--defsym,__stack_limit=0x7ffe0000 to enforce a stack limit of 128KB. Note that this may only work with the GNU linker.


-fargument-alias
-fargument-noalias
-fargument-noalias-global
Specify the possible relationships among parameters and between parameters and global data.

-fargument-alias specifies that arguments (parameters) may alias each other and may alias global storage.
-fargument-noalias specifies that arguments do not alias each other, but may alias global storage.
-fargument-noalias-global specifies that arguments do not alias each other and do not alias global storage.

Each language will automatically use whatever option is required by the language standard. You should not need to use these options yourself.

-fleading-underscore
This option and its counterpart, -fno-leading-underscore, forcibly change the way C symbols are represented in the object file. One use is to help link with legacy assembly code.

Warning: the -fleading-underscore switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. Not all targets provide complete support for this switch.

-ftls-model=model
Alter the thread-local storage model to be used (see Thread-Local). The model argument should be one of global-dynamic, local-dynamic, initial-exec or local-exec.

The default without -fpic is initial-exec; with -fpic the default is global-dynamic.


Next: , Previous: Code Gen Options, Up: Invoking GCC

3.19 Environment Variables Affecting GCC

This section describes several environment variables that affect how GCC operates. Some of them work by specifying directories or prefixes to use when searching for various kinds of files. Some are used to specify other aspects of the compilation environment.

Note that you can also specify places to search using options such as -B, -I and -L (see Directory Options). These take precedence over places specified using environment variables, which in turn take precedence over those specified by the configuration of GCC. See Controlling the Compilation Driver gcc (GNU Compiler Collection (GCC) Internals).

LANG
LC_CTYPE
LC_MESSAGES
LC_ALL
These environment variables control the way that GCC uses localization information that allow GCC to work with different national conventions. GCC inspects the locale categories LC_CTYPE and LC_MESSAGES if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is en_GB for English in the United Kingdom.

The LC_CTYPE environment variable specifies character classification. GCC uses it to determine the character boundaries in a string; this is needed for some multibyte encodings that contain quote and escape characters that would otherwise be interpreted as a string end or escape.

The LC_MESSAGES environment variable specifies the language to use in diagnostic messages.

If the LC_ALL environment variable is set, it overrides the value of LC_CTYPE and LC_MESSAGES; otherwise, LC_CTYPE and LC_MESSAGES default to the value of the LANG environment variable. If none of these variables are set, GCC defaults to traditional C English behavior.

TMPDIR
If TMPDIR is set, it specifies the directory to use for temporary files. GCC uses temporary files to hold the output of one stage of compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the compiler proper.
GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish.

If GCC_EXEC_PREFIX is not set, GCC will attempt to figure out an appropriate prefix to use based on the pathname it was invoked with.

If GCC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is prefix/lib/gcc-lib/ where prefix is the value of prefix when you ran the configure script.

Other prefixes specified with -B take precedence over this prefix.

This prefix is also used for finding files such as crt0.o that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard directories whose name normally begins with /usr/local/lib/gcc-lib (more precisely, with the value of GCC_INCLUDE_DIR), GCC tries replacing that beginning with the specified prefix to produce an alternate directory name. Thus, with -Bfoo/, GCC will search foo/bar where it would normally search /usr/local/lib/bar. These alternate directories are searched first; the standard directories come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of directories, much like PATH. GCC tries the directories thus specified when searching for subprograms, if it can't find the subprograms using GCC_EXEC_PREFIX.
LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH. When configured as a native compiler, GCC tries the directories thus specified when searching for special linker files, if it can't find them using GCC_EXEC_PREFIX. Linking using GCC also uses these directories when searching for ordinary libraries for the -l option (but directories specified with -L come first).
LANG
This variable is used to pass locale information to the compiler. One way in which this information is used is to determine the character set to be used when character literals, string literals and comments are parsed in C and C++. When the compiler is configured to allow multibyte characters, the following values for LANG are recognized:
C-JIS
Recognize JIS characters.
C-SJIS
Recognize SJIS characters.
C-EUCJP
Recognize EUCJP characters.

If LANG is not defined, or if it has some other value, then the compiler will use mblen and mbtowc as defined by the default locale to recognize and translate multibyte characters.

Some additional environments variables affect the behavior of the preprocessor.

CPATH
C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH
Each variable's value is a list of directories separated by a special character, much like PATH, in which to look for header files. The special character, PATH_SEPARATOR, is target-dependent and determined at GCC build time. For Windows-based targets it is a semicolon, and for almost all other targets it is a colon.

CPATH specifies a list of directories to be searched as if specified with -I, but after any paths given with -I options on the command line. This environment variable is used regardless of which language is being preprocessed.

The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of directories to be searched as if specified with -isystem, but after any paths given with -isystem options on the command line.

In all these variables, an empty element instructs the compiler to search its current working directory. Empty elements can appear at the beginning or end of a path. For instance, if the value of CPATH is :/special/include, that has the same effect as -I. -I/special/include.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the form file target, in which case the rules are written to file file using target as the target name.

In other words, this environment variable is equivalent to combining the options -MM and -MF (see Preprocessor Options), with an optional -MT switch too.

SUNPRO_DEPENDENCIES
This variable is the same as DEPENDENCIES_OUTPUT (see above), except that system header files are not ignored, so it implies -M rather than -MM. However, the dependence on the main input file is omitted. See Preprocessor Options.


Previous: Environment Variables, Up: Invoking GCC

3.20 Running Protoize

The program protoize is an optional part of GCC. You can use it to add prototypes to a program, thus converting the program to ISO C in one respect. The companion program unprotoize does the reverse: it removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as command line arguments. The conversion programs start out by compiling these files to see what functions they define. The information gathered about a file foo is saved in a file named foo.X.

After scanning comes actual conversion. The specified files are all eligible to be converted; any files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert only source and header files in the current directory. You can specify additional directories whose files should be converted with the -d directory option. You can also specify particular files to exclude with the -x file option. A file is converted if it is eligible, its directory name matches one of the specified directory names, and its name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and function declarations to specify the types of the arguments. The only ones not rewritten are those for varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to make them available for any calls that precede the function's definition. Or it can insert prototype declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to remove any argument types, and rewriting function definitions to the old-style pre-ISO form.

Both conversion programs print a warning for any function declaration or definition that they can't convert. You can suppress these warnings with -q.

The output from protoize or unprotoize replaces the original source file. The original file is renamed to a name ending with .save (for DOS, the saved filename ends in .sav without the original .c suffix). If the .save (.sav for DOS) file already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GCC itself to scan the program and collect information about the functions it uses. So neither of these programs will work until GCC is installed.

Here is a table of the options you can use with protoize and unprotoize. Each option works with both programs unless otherwise stated.

-B directory
Look for the file SYSCALLS.c.X in directory, instead of the usual directory (normally /usr/local/lib). This file contains prototype information about standard system functions. This option applies only to protoize.
-c compilation-options
Use compilation-options as the options when running gcc to produce the .X files. The special option -aux-info is always passed in addition, to tell gcc to write a .X file.

Note that the compilation options must be given as a single argument to protoize or unprotoize. If you want to specify several gcc options, you must quote the entire set of compilation options to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they would produce the wrong kind of output. These include -g, -O, -c, -S, and -o If you include these in the compilation-options, they are ignored.

-C
Rename files to end in .C (.cc for DOS-based file systems) instead of .c. This is convenient if you are converting a C program to C++. This option applies only to protoize.
-g
Add explicit global declarations. This means inserting explicit declarations at the beginning of each source file for each function that is called in the file and was not declared. These declarations precede the first function definition that contains a call to an undeclared function. This option applies only to protoize.
-i string
Indent old-style parameter declarations with the string string. This option applies only to protoize.

unprotoize converts prototyped function definitions to old-style function definitions, where the arguments are declared between the argument list and the initial {. By default, unprotoize uses five spaces as the indentation. If you want to indent with just one space instead, use -i " ".

-k
Keep the .X files. Normally, they are deleted after conversion is finished.
-l
Add explicit local declarations. protoize with -l inserts a prototype declaration for each function in each block which calls the function without any declaration. This option applies only to protoize.
-n
Make no real changes. This mode just prints information about the conversions that would have been done without -n.
-N
Make no .save files. The original files are simply deleted. Use this option with caution.
-p program
Use the program program as the compiler. Normally, the name gcc is used.
-q
Work quietly. Most warnings are suppressed.
-v
Print the version number, just like -v for gcc.

If you need special compiler options to compile one of your program's source files, then you should generate that file's .X file specially, by running gcc on that source file with the appropriate options and the option -aux-info. Then run protoize on the entire set of files. protoize will use the existing .X file because it is newer than the source file. For example:

     gcc -Dfoo=bar file1.c -aux-info file1.X
     protoize *.c

You need to include the special files along with the rest in the protoize command, even though their .X files already exist, because otherwise they won't get converted.

See Protoize Caveats, for more information on how to use protoize successfully.


Next: , Previous: Invoking GCC, Up: Top

4 C Implementation-defined behavior

A conforming implementation of ISO C is required to document its choice of behavior in each of the areas that are designated “implementation defined.” The following lists all such areas, along with the section number from the ISO/IEC 9899:1999 standard.


Next: , Up: C Implementation

4.1 Translation


Next: , Previous: Translation implementation, Up: C Implementation

4.2 Environment

The behavior of these points are dependent on the implementation of the C library, and are not defined by GCC itself.


Next: , Previous: Environment implementation, Up: C Implementation

4.3 Identifiers


Next: , Previous: Identifiers implementation, Up: C Implementation

4.4 Characters


Next: , Previous: Characters implementation, Up: C Implementation

4.5 Integers


Next: , Previous: Integers implementation, Up: C Implementation

4.6 Floating point


Next: , Previous: Floating point implementation, Up: C Implementation

4.7 Arrays and pointers


Next: , Previous: Arrays and pointers implementation, Up: C Implementation

4.8 Hints


Next: , Previous: Hints implementation, Up: C Implementation

4.9 Structures, unions, enumerations, and bit-fields


Next: , Previous: Structures unions enumerations and bit-fields implementation, Up: C Implementation

4.10 Qualifiers


Next: , Previous: Qualifiers implementation, Up: C Implementation

4.11 Preprocessing directives


Next: , Previous: Preprocessing directives implementation, Up: C Implementation

4.12 Library functions

The behavior of these points are dependent on the implementation of the C library, and are not defined by GCC itself.


Next: , Previous: Library functions implementation, Up: C Implementation

4.13 Architecture


Previous: Architecture implementation, Up: C Implementation

4.14 Locale-specific behavior

The behavior of these points are dependent on the implementation of the C library, and are not defined by GCC itself.


Next: , Previous: C Implementation, Up: Top

5 Extensions to the C Language Family

GNU C provides several language features not found in ISO standard C. (The -pedantic option directs GCC to print a warning message if any of these features is used.) To test for the availability of these features in conditional compilation, check for a predefined macro __GNUC__, which is always defined under GCC.

These extensions are available in C and Objective-C. Most of them are also available in C++. See Extensions to the C++ Language, for extensions that apply only to C++.

Some features that are in ISO C99 but not C89 or C++ are also, as extensions, accepted by GCC in C89 mode and in C++.


Next: , Up: C Extensions

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C. This allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this construct, parentheses go around the braces. For example:

     ({ int y = foo (); int z;
        if (y > 0) z = y;
        else z = - y;
        z; })

is a valid (though slightly more complex than necessary) expression for the absolute value of foo ().

The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement last within the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate each operand exactly once). For example, the “maximum” function is commonly defined as a macro in standard C as follows:

     #define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the operand has side effects. In GNU C, if you know the type of the operands (here let's assume int), you can define the macro safely as follows:

     #define maxint(a,b) \
       ({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an enumeration constant, the width of a bit-field, or the initial value of a static variable.

If you don't know the type of the operand, you can still do this, but you must use typeof (see Typeof).

Statement expressions are not supported fully in G++, and their fate there is unclear. (It is possible that they will become fully supported at some point, or that they will be deprecated, or that the bugs that are present will continue to exist indefinitely.) Presently, statement expressions do not work well as default arguments.

In addition, there are semantic issues with statement-expressions in C++. If you try to use statement-expressions instead of inline functions in C++, you may be surprised at the way object destruction is handled. For example:

     #define foo(a)  ({int b = (a); b + 3; })

does not work the same way as:

     inline int foo(int a) { int b = a; return b + 3; }

In particular, if the expression passed into foo involves the creation of temporaries, the destructors for those temporaries will be run earlier in the case of the macro than in the case of the function.

These considerations mean that it is probably a bad idea to use statement-expressions of this form in header files that are designed to work with C++. (Note that some versions of the GNU C Library contained header files using statement-expression that lead to precisely this bug.)


Next: , Previous: Statement Exprs, Up: C Extensions

5.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label is simply an identifier; you can jump to it with an ordinary goto statement, but only from within the statement expression it belongs to.

A local label declaration looks like this:

     __label__ label;

or

     __label__ label1, label2, /* ... */;

Local label declarations must come at the beginning of the statement expression, right after the ({, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You must do this in the usual way, with label:, within the statements of the statement expression.

The local label feature is useful because statement expressions are often used in macros. If the macro contains nested loops, a goto can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label will be multiply defined in that function. A local label avoids this problem. For example:

     #define SEARCH(array, target)                     \
     ({                                                \
       __label__ found;                                \
       typeof (target) _SEARCH_target = (target);      \
       typeof (*(array)) *_SEARCH_array = (array);     \
       int i, j;                                       \
       int value;                                      \
       for (i = 0; i < max; i++)                       \
         for (j = 0; j < max; j++)                     \
           if (_SEARCH_array[i][j] == _SEARCH_target)  \
             { value = i; goto found; }                \
       value = -1;                                     \
      found:                                           \
       value;                                          \
     })


Next: , Previous: Local Labels, Up: C Extensions

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function) with the unary operator &&. The value has type void *. This value is a constant and can be used wherever a constant of that type is valid. For example:

     void *ptr;
     /* ... */
     ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed goto statement3, goto *exp;. For example,

     goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump table:

     static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

     goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never does that.

Such an array of label values serves a purpose much like that of the switch statement. The switch statement is cleaner, so use that rather than an array unless the problem does not fit a switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the interpreter function can be stored in the threaded code for super-fast dispatching.

You may not use this mechanism to jump to code in a different function. If you do that, totally unpredictable things will happen. The best way to avoid this is to store the label address only in automatic variables and never pass it as an argument.

An alternate way to write the above example is

     static const int array[] = { &&foo - &&foo, &&bar - &&foo,
                                  &&hack - &&foo };
     goto *(&&foo + array[i]);

This is more friendly to code living in shared libraries, as it reduces the number of dynamic relocations that are needed, and by consequence, allows the data to be read-only.


Next: , Previous: Labels as Values, Up: C Extensions

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not supported for GNU C++.) The nested function's name is local to the block where it is defined. For example, here we define a nested function named square, and call it twice:

     foo (double a, double b)
     {
       double square (double z) { return z * z; }
     
       return square (a) + square (b);
     }

The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called lexical scoping. For example, here we show a nested function which uses an inherited variable named offset:

     bar (int *array, int offset, int size)
     {
       int access (int *array, int index)
         { return array[index + offset]; }
       int i;
       /* ... */
       for (i = 0; i < size; i++)
         /* ... */ access (array, i) /* ... */
     }

Nested function definitions are permitted within functions in the places where variable definitions are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing its address or passing the address to another function:

     hack (int *array, int size)
     {
       void store (int index, int value)
         { array[index] = value; }
     
       intermediate (store, size);
     }

Here, the function intermediate receives the address of store as an argument. If intermediate calls store, the arguments given to store are used to store into array. But this technique works only so long as the containing function (hack, in this example) does not exit.

If you try to call the nested function through its address after the containing function has exited, all hell will break loose. If you try to call it after a containing scope level has exited, and if it refers to some of the variables that are no longer in scope, you may be lucky, but it's not wise to take the risk. If, however, the nested function does not refer to anything that has gone out of scope, you should be safe.

GCC implements taking the address of a nested function using a technique called trampolines. A paper describing them is available as

http://people.debian.org/~aaronl/Usenix88-lexic.pdf.

A nested function can jump to a label inherited from a containing function, provided the label was explicitly declared in the containing function (see Local Labels). Such a jump returns instantly to the containing function, exiting the nested function which did the goto and any intermediate functions as well. Here is an example:

     bar (int *array, int offset, int size)
     {
       __label__ failure;
       int access (int *array, int index)
         {
           if (index > size)
             goto failure;
           return array[index + offset];
         }
       int i;
       /* ... */
       for (i = 0; i < size; i++)
         /* ... */ access (array, i) /* ... */
       /* ... */
       return 0;
     
      /* Control comes here from access
         if it detects an error.  */
      failure:
       return -1;
     }

A nested function always has internal linkage. Declaring one with extern is erroneous. If you need to declare the nested function before its definition, use auto (which is otherwise meaningless for function declarations).

     bar (int *array, int offset, int size)
     {
       __label__ failure;
       auto int access (int *, int);
       /* ... */
       int access (int *array, int index)
         {
           if (index > size)
             goto failure;
           return array[index + offset];
         }
       /* ... */
     }


Next: , Previous: Nested Functions, Up: C Extensions

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function received, and call another function with the same arguments, without knowing the number or types of the arguments.

You can also record the return value of that function call, and later return that value, without knowing what data type the function tried to return (as long as your caller expects that data type).

— Built-in Function: void * __builtin_apply_args ()

This built-in function returns a pointer to data describing how to perform a call with the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to a function into a block of memory allocated on the stack. Then it returns the address of that block.

— Built-in Function: void * __builtin_apply (void (*function)(), void *arguments, size_t size)

This built-in function invokes function with a copy of the parameters described by arguments and size.

The value of arguments should be the value returned by __builtin_apply_args. The argument size specifies the size of the stack argument data, in bytes.

This function returns a pointer to data describing how to return whatever value was returned by function. The data is saved in a block of memory allocated on the stack.

It is not always simple to compute the proper value for size. The value is used by __builtin_apply to compute the amount of data that should be pushed on the stack and copied from the incoming argument area.

— Built-in Function: void __builtin_return (void *result)

This built-in function returns the value described by result from the containing function. You should specify, for result, a value returned by __builtin_apply.


Next: , Previous: Constructing Calls, Up: C Extensions

5.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of this keyword looks like sizeof, but the construct acts semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an expression or with a type. Here is an example with an expression:

     typeof (x[0](1))

This assumes that x is an array of pointers to functions; the type described is that of the values of the functions.

Here is an example with a typename as the argument:

     typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ISO C programs, write __typeof__ instead of typeof. See Alternate Keywords.

A typeof-construct can be used anywhere a typedef name could be used. For example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.

typeof is often useful in conjunction with the statements-within-expressions feature. Here is how the two together can be used to define a safe “maximum” macro that operates on any arithmetic type and evaluates each of its arguments exactly once:

     #define max(a,b) \
       ({ typeof (a) _a = (a); \
           typeof (b) _b = (b); \
         _a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within the expressions that are substituted for a and b. Eventually we hope to design a new form of declaration syntax that allows you to declare variables whose scopes start only after their initializers; this will be a more reliable way to prevent such conflicts.

Some more examples of the use of typeof:

Compatibility Note: In addition to typeof, GCC 2 supported a more limited extension which permitted one to write

     typedef T = expr;

with the effect of declaring T to have the type of the expression expr. This extension does not work with GCC 3 (versions between 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code which relies on it should be rewritten to use typeof:

     typedef typeof(expr) T;

This will work with all versions of GCC.


Next: , Previous: Typeof, Up: C Extensions

5.7 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided their operands are lvalues. This means that you can take their addresses or store values into them.

All these extensions are deprecated.

For example, a compound expression can be assigned, provided the last expression in the sequence is an lvalue. These two expressions are equivalent:

     (a, b) += 5
     a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions are equivalent:

     &(a, b)
     a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false branches are both valid lvalues. For example, these two expressions are equivalent:

     (a ? b : c) = 5
     (a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand side is a cast works by converting the right-hand side first to the specified type, then to the type of the inner left-hand side expression. After this is stored, the value is converted back to the specified type to become the value of the assignment. Thus, if a has type char *, the following two expressions are equivalent:

     (int)a = 5
     (int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as += applied to a cast performs the arithmetic using the type resulting from the cast, and then continues as in the previous case. Therefore, these two expressions are equivalent:

     (int)a += 5
     (int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address would not work out coherently. Suppose that &(int)f were permitted, where f has type float. Then the following statement would try to store an integer bit-pattern where a floating point number belongs:

     *&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would convert 1 to floating point and store it. Rather than cause this inconsistency, we think it is better to prohibit use of & on a cast.

If you really do want an int * pointer with the address of f, you can simply write (int *)&f.


Next: , Previous: Lvalues, Up: C Extensions

5.8 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is nonzero, its value is the value of the conditional expression.

Therefore, the expression

     x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

     x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then repeating the operand in the middle would perform the side effect twice. Omitting the middle operand uses the value already computed without the undesirable effects of recomputing it.


Next: , Previous: Conditionals, Up: C Extensions

5.9 Double-Word Integers

ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension GCC supports them in C89 mode and in C++. Simply write long long int for a signed integer, or unsigned long long int for an unsigned integer. To make an integer constant of type long long int, add the suffix LL to the integer. To make an integer constant of type unsigned long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction, and bitwise boolean operations on these types are open-coded on all types of machines. Multiplication is open-coded if the machine supports fullword-to-doubleword a widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GCC.

There may be pitfalls when you use long long types for function arguments, unless you declare function prototypes. If a function expects type int for its argument, and you pass a value of type long long int, confusion will result because the caller and the subroutine will disagree about the number of bytes for the argument. Likewise, if the function expects long long int and you pass int. The best way to avoid such problems is to use prototypes.


Next: , Previous: Long Long, Up: C Extensions

5.10 Complex Numbers

ISO C99 supports complex floating data types, and as an extension GCC supports them in C89 mode and in C++, and supports complex integer data types which are not part of ISO C99. You can declare complex types using the keyword _Complex. As an extension, the older GNU keyword __complex__ is also supported.

For example, _Complex double x; declares x as a variable whose real part and imaginary part are both of type double. _Complex short int y; declares y to have real and imaginary parts of type short int; this is not likely to be useful, but it shows that the set of complex types is complete.

To write a constant with a complex data type, use the suffix i or j (either one; they are equivalent). For example, 2.5fi has type _Complex float and 3i has type _Complex int. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming C library (such as GNU libc), and want to construct complex constants of floating type, you should include <complex.h> and use the macros I or _Complex_I instead.

To extract the real part of a complex-valued expression exp, write __real__ exp. Likewise, use __imag__ to extract the imaginary part. This is a GNU extension; for values of floating type, you should use the ISO C99 functions crealf, creal, creall, cimagf, cimag and cimagl, declared in <complex.h> and also provided as built-in functions by GCC.

The operator ~ performs complex conjugation when used on a value with a complex type. This is a GNU extension; for values of floating type, you should use the ISO C99 functions conjf, conj and conjl, declared in <complex.h> and also provided as built-in functions by GCC.

GCC can allocate complex automatic variables in a noncontiguous fashion; it's even possible for the real part to be in a register while the imaginary part is on the stack (or vice-versa). Only the DWARF2 debug info format can represent this, so use of DWARF2 is recommended. If you are using the stabs debug info format, GCC describes a noncontiguous complex variable as if it were two separate variables of noncomplex type. If the variable's actual name is foo, the two fictitious variables are named foo$real and foo$imag. You can examine and set these two fictitious variables with your debugger.


Next: , Previous: Complex, Up: C Extensions

5.11 Hex Floats

ISO C99 supports floating-point numbers written not only in the usual decimal notation, such as 1.55e1, but also numbers such as 0x1.fp3 written in hexadecimal format. As a GNU extension, GCC supports this in C89 mode (except in some cases when strictly conforming) and in C++. In that format the 0x hex introducer and the p or P exponent field are mandatory. The exponent is a decimal number that indicates the power of 2 by which the significant part will be multiplied. Thus 0x1.f is 1 15/16, p3 multiplies it by 8, and the value of 0x1.fp3 is the same as 1.55e1.

Unlike for floating-point numbers in the decimal notation the exponent is always required in the hexadecimal notation. Otherwise the compiler would not be able to resolve the ambiguity of, e.g., 0x1.f. This could mean 1.0f or 1.9375 since f is also the extension for floating-point constants of type float.


Next: , Previous: Hex Floats, Up: C Extensions

5.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure which is really a header for a variable-length object:

     struct line {
       int length;
       char contents[0];
     };
     
     struct line *thisline = (struct line *)
       malloc (sizeof (struct line) + this_length);
     thisline->length = this_length;

In ISO C90, you would have to give contents a length of 1, which means either you waste space or complicate the argument to malloc.

In ISO C99, you would use a flexible array member, which is slightly different in syntax and semantics:

GCC versions before 3.0 allowed zero-length arrays to be statically initialized, as if they were flexible arrays. In addition to those cases that were useful, it also allowed initializations in situations that would corrupt later data. Non-empty initialization of zero-length arrays is now treated like any case where there are more initializer elements than the array holds, in that a suitable warning about "excess elements in array" is given, and the excess elements (all of them, in this case) are ignored.

Instead GCC allows static initialization of flexible array members. This is equivalent to defining a new structure containing the original structure followed by an array of sufficient size to contain the data. I.e. in the following, f1 is constructed as if it were declared like f2.

     struct f1 {
       int x; int y[];
     } f1 = { 1, { 2, 3, 4 } };
     
     struct f2 {
       struct f1 f1; int data[3];
     } f2 = { { 1 }, { 2, 3, 4 } };

The convenience of this extension is that f1 has the desired type, eliminating the need to consistently refer to f2.f1.

This has symmetry with normal static arrays, in that an array of unknown size is also written with [].

Of course, this extension only makes sense if the extra data comes at the end of a top-level object, as otherwise we would be overwriting data at subsequent offsets. To avoid undue complication and confusion with initialization of deeply nested arrays, we simply disallow any non-empty initialization except when the structure is the top-level object. For example:

     struct foo { int x; int y[]; };
     struct bar { struct foo z; };
     
     struct foo a = { 1, { 2, 3, 4 } };        // Valid.
     struct bar b = { { 1, { 2, 3, 4 } } };    // Invalid.
     struct bar c = { { 1, { } } };            // Valid.
     struct foo d[1] = { { 1 { 2, 3, 4 } } };  // Invalid.


Next: , Previous: Variable Length, Up: C Extensions

5.13 Structures With No Members

GCC permits a C structure to have no members:

     struct empty {
     };

The structure will have size zero. In C++, empty structures are part of the language. G++ treats empty structures as if they had a single member of type char.


Next: , Previous: Zero Length, Up: C Extensions

5.14 Arrays of Variable Length

Variable-length automatic arrays are allowed in ISO C99, and as an extension GCC accepts them in C89 mode and in C++. (However, GCC's implementation of variable-length arrays does not yet conform in detail to the ISO C99 standard.) These arrays are declared like any other automatic arrays, but with a length that is not a constant expression. The storage is allocated at the point of declaration and deallocated when the brace-level is exited. For example:

     FILE *
     concat_fopen (char *s1, char *s2, char *mode)
     {
       char str[strlen (s1) + strlen (s2) + 1];
       strcpy (str, s1);
       strcat (str, s2);
       return fopen (str, mode);
     }

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping into the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The function alloca is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca exists until the containing function returns. The space for a variable-length array is deallocated as soon as the array name's scope ends. (If you use both variable-length arrays and alloca in the same function, deallocation of a variable-length array will also deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

     struct entry
     tester (int len, char data[len][len])
     {
       /* ... */
     }

The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list—another GNU extension.

     struct entry
     tester (int len; char data[len][len], int len)
     {
       /* ... */
     }

The int len before the semicolon is a parameter forward declaration, and it serves the purpose of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the last one must end with a semicolon, which is followed by the “real” parameter declarations. Each forward declaration must match a “real” declaration in parameter name and data type. ISO C99 does not support parameter forward declarations.


Next: , Previous: Empty Structures, Up: C Extensions

5.15 Macros with a Variable Number of Arguments.

In the ISO C standard of 1999, a macro can be declared to accept a variable number of arguments much as a function can. The syntax for defining the macro is similar to that of a function. Here is an example:

     #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)

Here ... is a variable argument. In the invocation of such a macro, it represents the zero or more tokens until the closing parenthesis that ends the invocation, including any commas. This set of tokens replaces the identifier __VA_ARGS__ in the macro body wherever it appears. See the CPP manual for more information.

GCC has long supported variadic macros, and used a different syntax that allowed you to give a name to the variable arguments just like any other argument. Here is an example:

     #define debug(format, args...) fprintf (stderr, format, args)

This is in all ways equivalent to the ISO C example above, but arguably more readable and descriptive.

GNU CPP has two further variadic macro extensions, and permits them to be used with either of the above forms of macro definition.

In standard C, you are not allowed to leave the variable argument out entirely; but you are allowed to pass an empty argument. For example, this invocation is invalid in ISO C, because there is no comma after the string:

     debug ("A message")

GNU CPP permits you to completely omit the variable arguments in this way. In the above examples, the compiler would complain, though since the expansion of the macro still has the extra comma after the format string.

To help solve this problem, CPP behaves specially for variable arguments used with the token paste operator, ##. If instead you write

     #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)

and if the variable arguments are omitted or empty, the ## operator causes the preprocessor to remove the comma before it. If you do provide some variable arguments in your macro invocation, GNU CPP does not complain about the paste operation and instead places the variable arguments after the comma. Just like any other pasted macro argument, these arguments are not macro expanded.


Next: , Previous: Variadic Macros, Up: C Extensions

5.16 Slightly Looser Rules for Escaped Newlines

Recently, the preprocessor has relaxed its treatment of escaped newlines. Previously, the newline had to immediately follow a backslash. The current implementation allows whitespace in the form of spaces, horizontal and vertical tabs, and form feeds between the backslash and the subsequent newline. The preprocessor issues a warning, but treats it as a valid escaped newline and combines the two lines to form a single logical line. This works within comments and tokens, as well as between tokens. Comments are not treated as whitespace for the purposes of this relaxation, since they have not yet been replaced with spaces.


Next: , Previous: Escaped Newlines, Up: C Extensions

5.17 Non-Lvalue Arrays May Have Subscripts

In ISO C99, arrays that are not lvalues still decay to pointers, and may be subscripted, although they may not be modified or used after the next sequence point and the unary & operator may not be applied to them. As an extension, GCC allows such arrays to be subscripted in C89 mode, though otherwise they do not decay to pointers outside C99 mode. For example, this is valid in GNU C though not valid in C89:

     struct foo {int a[4];};
     
     struct foo f();
     
     bar (int index)
     {
       return f().a[index];
     }


Next: , Previous: Subscripting, Up: C Extensions

5.18 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and returns 1.

The option -Wpointer-arith requests a warning if these extensions are used.


Next: , Previous: Pointer Arith, Up: C Extensions

5.19 Non-Constant Initializers

As in standard C++ and ISO C99, the elements of an aggregate initializer for an automatic variable are not required to be constant expressions in GNU C. Here is an example of an initializer with run-time varying elements:

     foo (float f, float g)
     {
       float beat_freqs[2] = { f-g, f+g };
       /* ... */
     }


Next: , Previous: Initializers, Up: C Extensions

5.20 Compound Literals

ISO C99 supports compound literals. A compound literal looks like a cast containing an initializer. Its value is an object of the type specified in the cast, containing the elements specified in the initializer; it is an lvalue. As an extension, GCC supports compound literals in C89 mode and in C++.

Usually, the specified type is a structure. Assume that struct foo and structure are declared as shown:

     struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a compound literal:

     structure = ((struct foo) {x + y, 'a', 0});

This is equivalent to writing the following:

     {
       struct foo temp = {x + y, 'a', 0};
       structure = temp;
     }

You can also construct an array. If all the elements of the compound literal are (made up of) simple constant expressions, suitable for use in initializers of objects of static storage duration, then the compound literal can be coerced to a pointer to its first element and used in such an initializer, as shown here:

     char **foo = (char *[]) { "x", "y", "z" };

Compound literals for scalar types and union types are is also allowed, but then the compound literal is equivalent to a cast.

As a GNU extension, GCC allows initialization of objects with static storage duration by compound literals (which is not possible in ISO C99, because the initializer is not a constant). It is handled as if the object was initialized only with the bracket enclosed list if compound literal's and object types match. The initializer list of the compound literal must be constant. If the object being initialized has array type of unknown size, the size is determined by compound literal size.

     static struct foo x = (struct foo) {1, 'a', 'b'};
     static int y[] = (int []) {1, 2, 3};
     static int z[] = (int [3]) {1};

The above lines are equivalent to the following:

     static struct foo x = {1, 'a', 'b'};
     static int y[] = {1, 2, 3};
     static int z[] = {1, 0, 0};


Next: , Previous: Compound Literals, Up: C Extensions

5.21 Designated Initializers

Standard C89 requires the elements of an initializer to appear in a fixed order, the same as the order of the elements in the array or structure being initialized.

In ISO C99 you can give the elements in any order, specifying the array indices or structure field names they apply to, and GNU C allows this as an extension in C89 mode as well. This extension is not implemented in GNU C++.

To specify an array index, write [index] = before the element value. For example,

     int a[6] = { [4] = 29, [2] = 15 };

is equivalent to

     int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is automatic.

An alternative syntax for this which has been obsolete since GCC 2.5 but GCC still accepts is to write [index] before the element value, with no =.

To initialize a range of elements to the same value, write [first ... last] = value. This is a GNU extension. For example,

     int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

If the value in it has side-effects, the side-effects will happen only once, not for each initialized field by the range initializer.

Note that the length of the array is the highest value specified plus one.

In a structure initializer, specify the name of a field to initialize with .fieldname = before the element value. For example, given the following structure,

     struct point { int x, y; };

the following initialization

     struct point p = { .y = yvalue, .x = xvalue };

is equivalent to

     struct point p = { xvalue, yvalue };

Another syntax which has the same meaning, obsolete since GCC 2.5, is fieldname:, as shown here:

     struct point p = { y: yvalue, x: xvalue };

The [index] or .fieldname is known as a designator. You can also use a designator (or the obsolete colon syntax) when initializing a union, to specify which element of the union should be used. For example,

     union foo { int i; double d; };
     
     union foo f = { .d = 4 };

will convert 4 to a double to store it in the union using the second element. By contrast, casting 4 to type union foo would store it into the union as the integer i, since it is an integer. (See Cast to Union.)

You can combine this technique of naming elements with ordinary C initialization of successive elements. Each initializer element that does not have a designator applies to the next consecutive element of the array or structure. For example,

     int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

     int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are characters or belong to an enum type. For example:

     int whitespace[256]
       = { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
           ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };

You can also write a series of .fieldname and [index] designators before an = to specify a nested subobject to initialize; the list is taken relative to the subobject corresponding to the closest surrounding brace pair. For example, with the struct point declaration above:

     struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 };

If the same field is initialized multiple times, it will have value from the last initialization. If any such overridden initialization has side-effect, it is unspecified whether the side-effect happens or not. Currently, gcc will discard them and issue a warning.


Next: , Previous: Cast to Union, Up: C Extensions

5.22 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

     case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

     case 'A' ... 'Z':

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you use it with integer values. For example, write this:

     case 1 ... 5:

rather than this:

     case 1...5:


Next: , Previous: Designated Inits, Up: C Extensions

5.23 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type. You can specify the type either with union tag or with a typedef name. A cast to union is actually a constructor though, not a cast, and hence does not yield an lvalue like normal casts. (See Compound Literals.)

The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables:

     union foo { int i; double d; };
     int x;
     double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union:

     union foo u;
     /* ... */
     u = (union foo) x  ==  u.i = x
     u = (union foo) y  ==  u.d = y

You can also use the union cast as a function argument:

     void hack (union foo);
     /* ... */
     hack ((union foo) x);


Next: , Previous: Case Ranges, Up: C Extensions

5.24 Mixed Declarations and Code

ISO C99 and ISO C++ allow declarations and code to be freely mixed within compound statements. As an extension, GCC also allows this in C89 mode. For example, you could do:

     int i;
     /* ... */
     i++;
     int j = i + 2;

Each identifier is visible from where it is declared until the end of the enclosing block.


Next: , Previous: Mixed Declarations, Up: C Extensions

5.25 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are currently defined for functions on all targets: noreturn, noinline, always_inline, pure, const, nothrow, format, format_arg, no_instrument_function, section, constructor, destructor, used, unused, deprecated, weak, malloc, alias, and nonnull. Several other attributes are defined for functions on particular target systems. Other attributes, including section are supported for variables declarations (see Variable Attributes) and for types (see Type Attributes).

You may also specify attributes with __ preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __noreturn__ instead of noreturn.

See Attribute Syntax, for details of the exact syntax for using attributes.

noreturn
A few standard library functions, such as abort and exit, cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them noreturn to tell the compiler this fact. For example,
          void fatal () __attribute__ ((noreturn));
          
          void
          fatal (/* ... */)
          {
            /* ... */ /* Print error message. */ /* ... */
            exit (1);
          }
     

The noreturn keyword tells the compiler to assume that fatal cannot return. It can then optimize without regard to what would happen if fatal ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function does not return, which works in the current version and in some older versions, is as follows:

          typedef void voidfn ();
          
          volatile voidfn fatal;
     


noinline
This function attribute prevents a function from being considered for inlining.


always_inline
Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level was specified.


pure
Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute pure. For example,
          int square (int) __attribute__ ((pure));
     

says that the hypothetical function square is safe to call fewer times than the program says.

Some of common examples of pure functions are strlen or memcmp. Interesting non-pure functions are functions with infinite loops or those depending on volatile memory or other system resource, that may change between two consecutive calls (such as feof in a multithreading environment).

The attribute pure is not implemented in GCC versions earlier than 2.96.

const
Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is just slightly more strict class than the pure attribute above, since function is not allowed to read global memory.

Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const function to return void.

The attribute const is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows:

          typedef int intfn ();
          
          extern const intfn square;
     

This approach does not work in GNU C++ from 2.6.0 on, since the language specifies that the const must be attached to the return value.


nothrow
The nothrow attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception with the notable exceptions of qsort and bsearch that take function pointer arguments. The nothrow attribute is not implemented in GCC versions earlier than 3.2.
format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf, strftime or strfmon style arguments which should be type-checked against a format string. For example, the declaration:
          extern int
          my_printf (void *my_object, const char *my_format, ...)
                __attribute__ ((format (printf, 2, 3)));
     

causes the compiler to check the arguments in calls to my_printf for consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should be printf, scanf, strftime or strfmon. (You can also use __printf__, __scanf__, __strftime__ or __strfmon__.) The parameter string-index specifies which argument is the format string argument (starting from 1), while first-to-check is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as vprintf), specify the third parameter as zero. In this case the compiler only checks the format string for consistency. For strftime formats, the third parameter is required to be zero. Since non-static C++ methods have an implicit this argument, the arguments of such methods should be counted from two, not one, when giving values for string-index and first-to-check.

In the example above, the format string (my_format) is the second argument of the function my_print, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless -ffreestanding is used) checks formats for the standard library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and vsprintf whenever such warnings are requested (using -Wformat), so there is no need to modify the header file stdio.h. In C99 mode, the functions snprintf, vsnprintf, vscanf, vfscanf and vsscanf are also checked. Except in strictly conforming C standard modes, the X/Open function strfmon is also checked as are printf_unlocked and fprintf_unlocked. See Options Controlling C Dialect.

format_arg (string-index)
The format_arg attribute specifies that a function takes a format string for a printf, scanf, strftime or strfmon style function and modifies it (for example, to translate it into another language), so the result can be passed to a printf, scanf, strftime or strfmon style function (with the remaining arguments to the format function the same as they would have been for the unmodified string). For example, the declaration:
          extern char *
          my_dgettext (char *my_domain, const char *my_format)
                __attribute__ ((format_arg (2)));
     

causes the compiler to check the arguments in calls to a printf, scanf, strftime or strfmon type function, whose format string argument is a call to the my_dgettext function, for consistency with the format string argument my_format. If the format_arg attribute had not been specified, all the compiler could tell in such calls to format functions would be that the format string argument is not constant; this would generate a warning when -Wformat-nonliteral is used, but the calls could not be checked without the attribute.

The parameter string-index specifies which argument is the format string argument (starting from one). Since non-static C++ methods have an implicit this argument, the arguments of such methods should be counted from two.

The format-arg attribute allows you to identify your own functions which modify format strings, so that GCC can check the calls to printf, scanf, strftime or strfmon type function whose operands are a call to one of your own function. The compiler always treats gettext, dgettext, and dcgettext in this manner except when strict ISO C support is requested by -ansi or an appropriate -std option, or -ffreestanding is used. See Options Controlling C Dialect.

nonnull (arg-index, ...)
The nonnull attribute specifies that some function parameters should be non-null pointers. For instance, the declaration:
          extern void *
          my_memcpy (void *dest, const void *src, size_t len)
          	__attribute__((nonnull (1, 2)));
     

causes the compiler to check that, in calls to my_memcpy, arguments dest and src are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as non-null, and the -Wnonnull option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will not be null.

If no argument index list is given to the nonnull attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example:

          extern void *
          my_memcpy (void *dest, const void *src, size_t len)
          	__attribute__((nonnull));
     

no_instrument_function
If -finstrument-functions is given, profiling function calls will be generated at entry and exit of most user-compiled functions. Functions with this attribute will not be so instrumented.
section ("section-name")
Normally, the compiler places the code it generates in the text section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The section attribute specifies that a function lives in a particular section. For example, the declaration:
          extern void foobar (void) __attribute__ ((section ("bar")));
     

puts the function foobar in the bar section.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead.

constructor
destructor
The constructor attribute causes the function to be called automatically before execution enters main (). Similarly, the destructor attribute causes the function to be called automatically after main () has completed or exit () has been called. Functions with these attributes are useful for initializing data that will be used implicitly during the execution of the program.

These attributes are not currently implemented for Objective-C.


unused
This attribute, attached to a function, means that the function is meant to be possibly unused. GCC will not produce a warning for this function. GNU C++ does not currently support this attribute as definitions without parameters are valid in C++.


used
This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly.


deprecated
The deprecated attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated function, to enable users to easily find further information about why the function is deprecated, or what they should do instead. Note that the warnings only occurs for uses:
          int old_fn () __attribute__ ((deprecated));
          int old_fn ();
          int (*fn_ptr)() = old_fn;
     

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for variables and types (see Variable Attributes, see Type Attributes.)

weak
The weak attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions which can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker.
malloc
The malloc attribute is used to tell the compiler that a function may be treated as if it were the malloc function. The compiler assumes that calls to malloc result in pointers that cannot alias anything. This will often improve optimization.
alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance,
          void __f () { /* Do something. */; }
          void f () __attribute__ ((weak, alias ("__f")));
     

declares f to be a weak alias for __f. In C++, the mangled name for the target must be used.

Not all target machines support this attribute.

visibility ("visibility_type")
The visibility attribute on ELF targets causes the declaration to be emitted with default, hidden, protected or internal visibility.
          void __attribute__ ((visibility ("protected")))
          f () { /* Do something. */; }
          int i __attribute__ ((visibility ("hidden")));
     

See the ELF gABI for complete details, but the short story is:

default
Default visibility is the normal case for ELF. This value is available for the visibility attribute to override other options that may change the assumed visibility of symbols.
hidden
Hidden visibility indicates that the symbol will not be placed into the dynamic symbol table, so no other module (executable or shared library) can reference it directly.
protected
Protected visibility indicates that the symbol will be placed in the dynamic symbol table, but that references within the defining module will bind to the local symbol. That is, the symbol cannot be overridden by another module.
internal
Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, gcc defines internal visibility to mean that the function is never called from another module. Note that hidden symbols, while they cannot be referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a symbol cannot be called from outside the module, gcc may for instance omit the load of a PIC register since it is known that the calling function loaded the correct value.

Not all ELF targets support this attribute.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler to pass up to number integer arguments in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments will continue to be passed all of their arguments on the stack.

Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is the default). Lazy binding will send the first call via resolving code in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be safe since the loaders there save all registers. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.)

stdcall
On the Intel 386, the stdcall attribute causes the compiler to assume that the called function will pop off the stack space used to pass arguments, unless it takes a variable number of arguments.
cdecl
On the Intel 386, the cdecl attribute causes the compiler to assume that the calling function will pop off the stack space used to pass arguments. This is useful to override the effects of the -mrtd switch.
longcall/shortcall
On the RS/6000 and PowerPC, the longcall attribute causes the compiler to always call this function via a pointer, just as it would if the -mlongcall option had been specified. The shortcall attribute causes the compiler not to do this. These attributes override both the -mlongcall switch and the #pragma longcall setting.

See RS/6000 and PowerPC Options, for more information on whether long calls are necessary.

long_call/short_call
This attribute specifies how a particular function is called on ARM. Both attributes override the -mlong-calls (see ARM Options) command line switch and #pragma long_calls settings. The long_call attribute causes the compiler to always call the function by first loading its address into a register and then using the contents of that register. The short_call attribute always places the offset to the function from the call site into the BL instruction directly.
function_vector
Use this attribute on the H8/300 and H8/300H to indicate that the specified function should be called through the function vector. Calling a function through the function vector will reduce code size, however; the function vector has a limited size (maximum 128 entries on the H8/300 and 64 entries on the H8/300H) and shares space with the interrupt vector.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly.

interrupt
Use this attribute on the ARM, AVR, M32R/D and Xstormy16 ports to indicate that the specified function is an interrupt handler. The compiler will generate function entry and exit sequences suitable for use in an interrupt handler when this attribute is present.

Note, interrupt handlers for the H8/300, H8/300H and SH processors can be specified via the interrupt_handler attribute.

Note, on the AVR, interrupts will be enabled inside the function.

Note, for the ARM, you can specify the kind of interrupt to be handled by adding an optional parameter to the interrupt attribute like this:

          void f () __attribute__ ((interrupt ("IRQ")));
     

Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF.

interrupt_handler
Use this attribute on the H8/300, H8/300H and SH to indicate that the specified function is an interrupt handler. The compiler will generate function entry and exit sequences suitable for use in an interrupt handler when this attribute is present.
sp_switch
Use this attribute on the SH to indicate an interrupt_handler function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack.
          void *alt_stack;
          void f () __attribute__ ((interrupt_handler,
                                    sp_switch ("alt_stack")));
     

trap_exit
Use this attribute on the SH for an interrupt_handle to return using trapa instead of rte. This attribute expects an integer argument specifying the trap number to be used.
eightbit_data
Use this attribute on the H8/300 and H8/300H to indicate that the specified variable should be placed into the eight bit data section. The compiler will generate more efficient code for certain operations on data in the eight bit data area. Note the eight bit data area is limited to 256 bytes of data.

You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly.

tiny_data
Use this attribute on the H8/300H to indicate that the specified variable should be placed into the tiny data section. The compiler will generate more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32kbytes of data.
signal
Use this attribute on the AVR to indicate that the specified function is a signal handler. The compiler will generate function entry and exit sequences suitable for use in a signal handler when this attribute is present. Interrupts will be disabled inside the function.
naked
Use this attribute on the ARM, AVR and IP2K ports to indicate that the specified function does not need prologue/epilogue sequences generated by the compiler. It is up to the programmer to provide these sequences.
model (model-name)
Use this attribute on the M32R/D to set the addressability of an object, and of the code generated for a function. The identifier model-name is one of small, medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses can be loaded with the ld24 instruction), and are callable with the bl instruction.

Medium model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and are callable with the bl instruction.

Large model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses), and may not be reachable with the bl instruction (the compiler will generate the much slower seth/add3/jl instruction sequence).

far
On 68HC11 and 68HC12 the far attribute causes the compiler to use a calling convention that takes care of switching memory banks when entering and leaving a function. This calling convention is also the default when using the -mlong-calls option.

On 68HC12 the compiler will use the call and rtc instructions to call and return from a function.

On 68HC11 the compiler will generate a sequence of instructions to invoke a board-specific routine to switch the memory bank and call the real function. The board-specific routine simulates a call. At the end of a function, it will jump to a board-specific routine instead of using rts. The board-specific return routine simulates the rtc.

near
On 68HC11 and 68HC12 the near attribute causes the compiler to use the normal calling convention based on jsr and rts. This attribute can be used to cancel the effect of the -mlong-calls option.
dllimport
On Windows targets, the dllimport attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the Windows dll library. The pointer name is formed by combining _imp__ and the function or variable name. The attribute implies extern storage.

Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol definition, an error is reported. If a symbol previously declared dllimport is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a subsequent declaration as dllexport.

When applied to C++ classes, the attribute marks non-inlined member functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks.

On cygwin, mingw and arm-pe targets, __declspec(dllimport) is recognized as a synonym for __attribute__ ((dllimport)) for compatibility with other Windows compilers.

The use of the dllimport attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the dll. The use of the dllimport attribute on imported variables was required on older versions of GNU ld, but can now be avoided by passing the --enable-auto-import switch to ld. As with functions, using the attribute for a variable eliminates a thunk in the dll.

One drawback to using this attribute is that a pointer to a function or variable marked as dllimport cannot be used as a constant address. The attribute can be disabled for functions by setting the -mnop-fun-dllimport flag.

dllexport
On Windows targets the dllexport attribute causes the compiler to provide a global pointer to a pointer in a dll, so that it can be referenced with the dllimport attribute. The pointer name is formed by combining _imp__ and the function or variable name.

Currently, the dllexportattribute is ignored for inlined functions, but export can be forced by using the -fkeep-inline-functions flag. The attribute is also ignored for undefined symbols.

When applied to C++ classes. the attribute marks defined non-inlined member functions and static data members as exports. Static consts initialized in-class are not marked unless they are also defined out-of-class.

On cygwin, mingw and arm-pe targets, __declspec(dllexport) is recognized as a synonym for __attribute__ ((dllexport)) for compatibility with other Windows compilers.

Alternative methods for including the symbol in the dll's export table are to use a .def file with an EXPORTS section or, with GNU ld, using the --export-all linker flag.

You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ISO C's #pragma should be used instead. At the time __attribute__ was designed, there were two reasons for not doing this.

  1. It is impossible to generate #pragma commands from a macro.
  2. There is no telling what the same #pragma might mean in another compiler.

These two reasons applied to almost any application that might have been proposed for #pragma. It was basically a mistake to use #pragma for anything.

The ISO C99 standard includes _Pragma, which now allows pragmas to be generated from macros. In addition, a #pragma GCC namespace is now in use for GCC-specific pragmas. However, it has been found convenient to use __attribute__ to achieve a natural attachment of attributes to their corresponding declarations, whereas #pragma GCC is of use for constructs that do not naturally form part of the grammar. See Miscellaneous Preprocessing Directives (The GNU C Preprocessor).


Next: , Previous: Function Attributes, Up: C Extensions

5.26 Attribute Syntax

This section describes the syntax with which __attribute__ may be used, and the constructs to which attribute specifiers bind, for the C language. Some details may vary for C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms described here may not be successfully parsed in all cases.

There are some problems with the semantics of attributes in C++. For example, there are no manglings for attributes, although they may affect code generation, so problems may arise when attributed types are used in conjunction with templates or overloading. Similarly, typeid does not distinguish between types with different attributes. Support for attributes in C++ may be restricted in future to attributes on declarations only, but not on nested declarators.

See Function Attributes, for details of the semantics of attributes applying to functions. See Variable Attributes, for details of the semantics of attributes applying to variables. See Type Attributes, for details of the semantics of attributes applying to structure, union and enumerated types.

An attribute specifier is of the form __attribute__ ((attribute-list)). An attribute list is a possibly empty comma-separated sequence of attributes, where each attribute is one of the following:

An attribute specifier list is a sequence of one or more attribute specifiers, not separated by any other tokens.

An attribute specifier list may appear after the colon following a label, other than a case or default label. The only attribute it makes sense to use after a label is unused. This feature is intended for code generated by programs which contains labels that may be unused but which is compiled with -Wall. It would not normally be appropriate to use in it human-written code, though it could be useful in cases where the code that jumps to the label is contained within an #ifdef conditional.

An attribute specifier list may appear as part of a struct, union or enum specifier. It may go either immediately after the struct, union or enum keyword, or after the closing brace. It is ignored if the content of the structure, union or enumerated type is not defined in the specifier in which the attribute specifier list is used—that is, in usages such as struct __attribute__((foo)) bar with no following opening brace. Where attribute specifiers follow the closing brace, they are considered to relate to the structure, union or enumerated type defined, not to any enclosing declaration the type specifier appears in, and the type defined is not complete until after the attribute specifiers.

Otherwise, an attribute specifier appears as part of a declaration, counting declarations of unnamed parameters and type names, and relates to that declaration (which may be nested in another declaration, for example in the case of a parameter declaration), or to a particular declarator within a declaration. Where an attribute specifier is applied to a parameter declared as a function or an array, it should apply to the function or array rather than the pointer to which the parameter is implicitly converted, but this is not yet correctly implemented.

Any list of specifiers and qualifiers at the start of a declaration may contain attribute specifiers, whether or not such a list may in that context contain storage class specifiers. (Some attributes, however, are essentially in the nature of storage class specifiers, and only make sense where storage class specifiers may be used; for example, section.) There is one necessary limitation to this syntax: the first old-style parameter declaration in a function definition cannot begin with an attribute specifier, because such an attribute applies to the function instead by syntax described below (which, however, is not yet implemented in this case). In some other cases, attribute specifiers are permitted by this grammar but not yet supported by the compiler. All attribute specifiers in this place relate to the declaration as a whole. In the obsolescent usage where a type of int is implied by the absence of type specifiers, such a list of specifiers and qualifiers may be an attribute specifier list with no other specifiers or qualifiers.

An attribute specifier list may appear immediately before a declarator (other than the first) in a comma-separated list of declarators in a declaration of more than one identifier using a single list of specifiers and qualifiers. Such attribute specifiers apply only to the identifier before whose declarator they appear. For example, in

     __attribute__((noreturn)) void d0 (void),
         __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
          d2 (void)

the noreturn attribute applies to all the functions declared; the format attribute only applies to d1.

An attribute specifier list may appear immediately before the comma, = or semicolon terminating the declaration of an identifier other than a function definition. At present, such attribute specifiers apply to the declared object or function, but in future they may attach to the outermost adjacent declarator. In simple cases there is no difference, but, for example, in

     void (****f)(void) __attribute__((noreturn));

at present the noreturn attribute applies to f, which causes a warning since f is not a function, but in future it may apply to the function ****f. The precise semantics of what attributes in such cases will apply to are not yet specified. Where an assembler name for an object or function is specified (see Asm Labels), at present the attribute must follow the asm specification; in future, attributes before the asm specification may apply to the adjacent declarator, and those after it to the declared object or function.

An attribute specifier list may, in future, be permitted to appear after the declarator in a function definition (before any old-style parameter declarations or the function body).

Attribute specifiers may be mixed with type qualifiers appearing inside the [] of a parameter array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array, but at present this is not implemented and they are ignored.

An attribute specifier list may appear at the start of a nested declarator. At present, there are some limitations in this usage: the attributes correctly apply to the declarator, but for most individual attributes the semantics this implies are not implemented. When attribute specifiers follow the * of a pointer declarator, they may be mixed with any type qualifiers present. The following describes the formal semantics of this syntax. It will make the most sense if you are familiar with the formal specification of declarators in the ISO C standard.

Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration T D1, where T contains declaration specifiers that specify a type Type (such as int) and D1 is a declarator that contains an identifier ident. The type specified for ident for derived declarators whose type does not include an attribute specifier is as in the ISO C standard.

If D1 has the form ( attribute-specifier-list D ), and the declaration T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-declarator-type-list attribute-specifier-list Type” for ident.

If D1 has the form * type-qualifier-and-attribute-specifier-list D, and the declaration T D specifies the type “derived-declarator-type-list Type” for ident, then T D1 specifies the type “derived-declarator-type-list type-qualifier-and-attribute-specifier-list Type” for ident.

For example,

     void (__attribute__((noreturn)) ****f) (void);

specifies the type “pointer to pointer to pointer to pointer to non-returning function returning void”. As another example,

     char *__attribute__((aligned(8))) *f;

specifies the type “pointer to 8-byte-aligned pointer to char”. Note again that this does not work with most attributes; for example, the usage of aligned and noreturn attributes given above is not yet supported.

For compatibility with existing code written for compiler versions that did not implement attributes on nested declarators, some laxity is allowed in the placing of attributes. If an attribute that only applies to types is applied to a declaration, it will be treated as applying to the type of that declaration. If an attribute that only applies to declarations is applied to the type of a declaration, it will be treated as applying to that declaration; and, for compatibility with code placing the attributes immediately before the identifier declared, such an attribute applied to a function return type will be treated as applying to the function type, and such an attribute applied to an array element type will be treated as applying to the array type. If an attribute that only applies to function types is applied to a pointer-to-function type, it will be treated as applying to the pointer target type; if such an attribute is applied to a function return type that is not a pointer-to-function type, it will be treated as applying to the function type.


Next: , Previous: Attribute Syntax, Up: C Extensions

5.27 Prototypes and Old-Style Function Definitions

GNU C extends ISO C to allow a function prototype to override a later old-style non-prototype definition. Consider the following example:

     /* Use prototypes unless the compiler is old-fashioned.  */
     #ifdef __STDC__
     #define P(x) x
     #else
     #define P(x) ()
     #endif
     
     /* Prototype function declaration.  */
     int isroot P((uid_t));
     
     /* Old-style function definition.  */
     int
     isroot (x)   /* ??? lossage here ??? */
          uid_t x;
     {
       return x == 0;
     }

Suppose the type uid_t happens to be short. ISO C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function definition's argument is really an int, which does not match the prototype argument type of short.

This restriction of ISO C makes it hard to write code that is portable to traditional C compilers, because the programmer does not know whether the uid_t type is short, int, or long. Therefore, in cases like these GNU C allows a prototype to override a later old-style definition. More precisely, in GNU C, a function prototype argument type overrides the argument type specified by a later old-style definition if the former type is the same as the latter type before promotion. Thus in GNU C the above example is equivalent to the following:

     int isroot (uid_t);
     
     int
     isroot (uid_t x)
     {
       return x == 0;
     }

GNU C++ does not support old-style function definitions, so this extension is irrelevant.


Next: , Previous: Function Prototypes, Up: C Extensions

5.28 C++ Style Comments

In GNU C, you may use C++ style comments, which start with // and continue until the end of the line. Many other C implementations allow such comments, and they are included in the 1999 C standard. However, C++ style comments are not recognized if you specify an -std option specifying a version of ISO C before C99, or -ansi (equivalent to -std=c89).


Next: , Previous: C++ Comments, Up: C Extensions

5.29 Dollar Signs in Identifier Names

In GNU C, you may normally use dollar signs in identifier names. This is because many traditional C implementations allow such identifiers. However, dollar signs in identifiers are not supported on a few target machines, typically because the target assembler does not allow them.


Next: , Previous: Dollar Signs, Up: C Extensions

5.30 The Character <ESC> in Constants

You can use the sequence \e in a string or character constant to stand for the ASCII character <ESC>.


Next: , Previous: Type Attributes, Up: C Extensions

5.31 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte boundary, then __alignof__ (double) is 8. This is true on many RISC machines. On more traditional machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type even at an odd address. For these machines, __alignof__ reports the recommended alignment of a type.

If the operand of __alignof__ is an lvalue rather than a type, its value is the required alignment for its type, taking into account any minimum alignment specified with GCC's __attribute__ extension (see Variable Attributes). For example, after this declaration:

     struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is 1, even though its actual alignment is probably 2 or 4, the same as __alignof__ (int).

It is an error to ask for the alignment of an incomplete type.


Next: , Previous: Character Escapes, Up: C Extensions

5.32 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure fields. This keyword is followed by an attribute specification inside double parentheses. Some attributes are currently defined generically for variables. Other attributes are defined for variables on particular target systems. Other attributes are available for functions (see Function Attributes) and for types (see Type Attributes). Other front ends might define more attributes (see Extensions to the C++ Language).

You may also specify attributes with __ preceding and following each keyword. This allows you to use them in header files without being concerned about a possible macro of the same name. For example, you may use __aligned__ instead of aligned.

See Attribute Syntax, for details of the exact syntax for using attributes.

aligned (alignment)
This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration:
          int x __attribute__ ((aligned (16))) = 0;
     

causes the compiler to allocate the global variable x on a 16-byte boundary. On a 68040, this could be used in conjunction with an asm expression to access the move16 instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a double-word aligned int pair, you could write:

          struct foo { int x[2] __attribute__ ((aligned (8))); };
     

This is an alternative to creating a union with a double member that forces the union to be double-word aligned.

As in the preceding examples, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given variable or structure field. Alternatively, you can leave out the alignment factor and just ask the compiler to align a variable or field to the maximum useful alignment for the target machine you are compiling for. For example, you could write:

          short array[3] __attribute__ ((aligned));
     

Whenever you leave out the alignment factor in an aligned attribute specification, the compiler automatically sets the alignment for the declared variable or field to the largest alignment which is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have aligned this way.

The aligned attribute can only increase the alignment; but you can decrease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an __attribute__ will still only provide you with 8 byte alignment. See your linker documentation for further information.

cleanup (cleanup_function)
The cleanup attribute runs a function when the variable goes out of scope. This attribute can only be applied to auto function scope variables; it may not be applied to parameters or variables with static storage duration. The function must take one parameter, a pointer to a type compatible with the variable. The return value of the function (if any) is ignored.

If -fexceptions is enabled, then cleanup_function will be run during the stack unwinding that happens during the processing of the exception. Note that the cleanup attribute does not allow the exception to be caught, only to perform an action. It is undefined what happens if cleanup_function does not return normally.

common
nocommon
The common attribute requests GCC to place a variable in “common” storage. The nocommon attribute requests the opposite – to allocate space for it directly.

These attributes override the default chosen by the -fno-common and -fcommon flags respectively.

deprecated
The deprecated attribute results in a warning if the variable is used anywhere in the source file. This is useful when identifying variables that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated variable, to enable users to easily find further information about why the variable is deprecated, or what they should do instead. Note that the warning only occurs for uses:
          extern int old_var __attribute__ ((deprecated));
          extern int old_var;
          int new_fn () { return old_var; }
     

results in a warning on line 3 but not line 2.

The deprecated attribute can also be used for functions and types (see Function Attributes, see Type Attributes.)

mode (mode)
This attribute specifies the data type for the declaration—whichever type corresponds to the mode mode. This in effect lets you request an integer or floating point type according to its width.

You may also specify a mode of byte or __byte__ to indicate the mode corresponding to a one-byte integer, word or __word__ for the mode of a one-word integer, and pointer or __pointer__ for the mode used to represent pointers.

packed
The packed attribute specifies that a variable or structure field should have the smallest possible alignment—one byte for a variable, and one bit for a field, unless you specify a larger value with the aligned attribute.

Here is a structure in which the field x is packed, so that it immediately follows a:

          struct foo
          {
            char a;
            int x[2] __attribute__ ((packed));
          };
     

section ("section-name")
Normally, the compiler places the objects it generates in sections like data and bss. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The section attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names:
          struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
          struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
          char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
          int init_data __attribute__ ((section ("INITDATA"))) = 0;
          
          main()
          {
            /* Initialize stack pointer */
            init_sp (stack + sizeof (stack));
          
            /* Initialize initialized data */
            memcpy (&init_data, &data, &edata - &data);
          
            /* Turn on the serial ports */
            init_duart (&a);
            init_duart (&b);
          }
     

Use the section attribute with an initialized definition of a global variable, as shown in the example. GCC issues a warning and otherwise ignores the section attribute in uninitialized variable declarations.

You may only use the section attribute with a fully initialized global definition because of the way linkers work. The linker requires each object be defined once, with the exception that uninitialized variables tentatively go in the common (or bss) section and can be multiply “defined”. You can force a variable to be initialized with the -fno-common flag or the nocommon attribute.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead.

shared
On Windows, in addition to putting variable definitions in a named section, the section can also be shared among all running copies of an executable or DLL. For example, this small program defines shared data by putting it in a named section shared and marking the section shareable:
          int foo __attribute__((section ("shared"), shared)) = 0;
          
          int
          main()
          {
            /* Read and write foo.  All running
               copies see the same value.  */
            return 0;
          }
     

You may only use the shared attribute along with section attribute with a fully initialized global definition because of the way linkers work. See section attribute for more information.

The shared attribute is only available on Windows.

tls_model ("tls_model")
The tls_model attribute sets thread-local storage model (see Thread-Local) of a particular __thread variable, overriding -ftls-model= command line switch on a per-variable basis. The tls_model argument should be one of global-dynamic, local-dynamic, initial-exec or local-exec.

Not all targets support this attribute.

transparent_union
This attribute, attached to a function parameter which is a union, means that the corresponding argument may have the type of any union member, but the argument is passed as if its type were that of the first union member. For more details see See Type Attributes. You can also use this attribute on a typedef for a union data type; then it applies to all function parameters with that type.
unused
This attribute, attached to a variable, means that the variable is meant to be possibly unused. GCC will not produce a warning for this variable.
vector_size (bytes)
This attribute specifies the vector size for the variable, measured in bytes. For example, the declaration:
          int foo __attribute__ ((vector_size (16)));
     

causes the compiler to set the mode for foo, to be 16 bytes, divided into int sized units. Assuming a 32-bit int (a vector of 4 units of 4 bytes), the corresponding mode of foo will be V4SI.

This attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct.

Aggregates with this attribute are invalid, even if they are of the same size as a corresponding scalar. For example, the declaration:

          struct S { int a; };
          struct S  __attribute__ ((vector_size (16))) foo;
     

is invalid even if the size of the structure is the same as the size of the int.

weak
The weak attribute is described in See Function Attributes.
model (model-name)
Use this attribute on the M32R/D to set the addressability of an object. The identifier model-name is one of small, medium, or large, representing each of the code models.

Small model objects live in the lower 16MB of memory (so that their addresses can be loaded with the ld24 instruction).

Medium and large model objects may live anywhere in the 32-bit address space (the compiler will generate seth/add3 instructions to load their addresses).

dllimport
The dllimport attribute is described in See Function Attributes.
dlexport
The dllexport attribute is described in See Function Attributes.

To specify multiple attributes, separate them by commas within the double parentheses: for example, __attribute__ ((aligned (16), packed)).


Next: , Previous: Variable Attributes, Up: C Extensions

5.33 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes of struct and union types when you define such types. This keyword is followed by an attribute specification inside double parentheses. Six attributes are currently defined for types: aligned, packed, transparent_union, unused, deprecated and may_alias. Other attributes are defined for functions (see Function Attributes) and for variables (see Variable Attributes).

You may also specify any one of these attributes with __ preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same name. For example, you may use __aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes either in a typedef declaration or just past the closing curly brace of a complete enum, struct or union type definition and the packed attribute only past the closing brace of a definition.

You may also specify attributes between the enum, struct or union tag and the name of the type rather than after the closing brace.

See Attribute Syntax, for details of the exact syntax for using attributes.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations:
          struct S { short f[3]; } __attribute__ ((aligned (8)));
          typedef int more_aligned_int __attribute__ ((aligned (8)));
     

force the compiler to insure (as far as it can) that each variable whose type is struct S or more_aligned_int will be allocated and aligned at least on a 8-byte boundary. On a SPARC, having all variables of type struct S aligned to 8-byte boundaries allows the compiler to use the ldd and std (doubleword load and store) instructions when copying one variable of type struct S to another, thus improving run-time efficiency.

Note that the alignment of any given struct or union type is required by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members of the struct or union in question. This means that you can effectively adjust the alignment of a struct or union type by attaching an aligned attribute to any one of the members of such a type, but the notation illustrated in the example above is a more obvious, intuitive, and readable way to request the compiler to adjust the alignment of an entire struct or union type.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given struct or union type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write:

          struct S { short f[3]; } __attribute__ ((aligned));
     

Whenever you leave out the alignment factor in an aligned attribute specification, the compiler automatically sets the alignment for the type to the largest alignment which is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables which have types that you have aligned this way.

In the example above, if the size of each short is 2 bytes, then the size of the entire struct S type is 6 bytes. The smallest power of two which is greater than or equal to that is 8, so the compiler sets the alignment for the entire struct S type to 8 bytes.

Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only individual stand-alone objects of that type, the compiler's ability to select a time-efficient alignment is primarily useful only when you plan to create arrays of variables having the relevant (efficiently aligned) type. If you declare or use arrays of variables of an efficiently-aligned type, then it is likely that your program will also be doing pointer arithmetic (or subscripting, which amounts to the same thing) on pointers to the relevant type, and the code that the compiler generates for these pointer arithmetic operations will often be more efficient for efficiently-aligned types than for other types.

The aligned attribute can only increase the alignment; but you can decrease it by specifying packed as well. See below.

Note that the effectiveness of aligned attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8 byte alignment, then specifying aligned(16) in an __attribute__ will still only provide you with 8 byte alignment. See your linker documentation for further information.

packed
This attribute, attached to an enum, struct, or union type definition, specifies that the minimum required memory be used to represent the type.

Specifying this attribute for struct and union types is equivalent to specifying the packed attribute on each of the structure or union members. Specifying the -fshort-enums flag on the line is equivalent to specifying the packed attribute on all enum definitions.

You may only specify this attribute after a closing curly brace on an enum definition, not in a typedef declaration, unless that declaration also contains the definition of the enum.

transparent_union
This attribute, attached to a union type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way.

First, the argument corresponding to a transparent union type can be of any type in the union; no cast is required. Also, if the union contains a pointer type, the corresponding argument can be a null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, qualifiers like const on the referenced type must be respected, just as with normal pointer conversions.

Second, the argument is passed to the function using the calling conventions of the first member of the transparent union, not the calling conventions of the union itself. All members of the union must have the same machine representation; this is necessary for this argument passing to work properly.

Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, suppose the wait function must accept either a value of type int * to comply with Posix, or a value of type union wait * to comply with the 4.1BSD interface. If wait's parameter were void *, wait would accept both kinds of arguments, but it would also accept any other pointer type and this would make argument type checking less useful. Instead, <sys/wait.h> might define the interface as follows:

          typedef union
            {
              int *__ip;
              union wait *__up;
            } wait_status_ptr_t __attribute__ ((__transparent_union__));
          
          pid_t wait (wait_status_ptr_t);
     

This interface allows either int * or union wait * arguments to be passed, using the int * calling convention. The program can call wait with arguments of either type:

          int w1 () { int w; return wait (&w); }
          int w2 () { union wait w; return wait (&w); }
     

With this interface, wait's implementation might look like this:

          pid_t wait (wait_status_ptr_t p)
          {
            return waitpid (-1, p.__ip, 0);
          }
     

unused
When attached to a type (including a union or a struct), this attribute means that variables of that type are meant to appear possibly unused. GCC will not produce a warning for any variables of that type, even if the variable appears to do nothing. This is often the case with lock or thread classes, which are usually defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions.
deprecated
The deprecated attribute results in a warning if the type is used anywhere in the source file. This is useful when identifying types that are expected to be removed in a future version of a program. If possible, the warning also includes the location of the declaration of the deprecated type, to enable users to easily find further information about why the type is deprecated, or what they should do instead. Note that the warnings only occur for uses and then only if the type is being applied to an identifier that itself is not being declared as deprecated.
          typedef int T1 __attribute__ ((deprecated));
          T1 x;
          typedef T1 T2;
          T2 y;
          typedef T1 T3 __attribute__ ((deprecated));
          T3 z __attribute__ ((deprecated));
     

results in a warning on line 2 and 3 but not lines 4, 5, or 6. No warning is issued for line 4 because T2 is not explicitly deprecated. Line 5 has no warning because T3 is explicitly deprecated. Similarly for line 6.

The deprecated attribute can also be used for functions and variables (see Function Attributes, see Variable Attributes.)

may_alias
Accesses to objects with types with this attribute are not subjected to type-based alias analysis, but are instead assumed to be able to alias any other type of objects, just like the char type. See -fstrict-aliasing for more information on aliasing issues.

Example of use:

          typedef short __attribute__((__may_alias__)) short_a;
          
          int
          main (void)
          {
            int a = 0x12345678;
            short_a *b = (short_a *) &a;
          
            b[1] = 0;
          
            if (a == 0x12345678)
              abort();
          
            exit(0);
          }
     

If you replaced short_a with short in the variable declaration, the above program would abort when compiled with -fstrict-aliasing, which is on by default at -O2 or above in recent GCC versions.

To specify multiple attributes, separate them by commas within the double parentheses: for example, __attribute__ ((aligned (16), packed)).


Next: , Previous: Alignment, Up: C Extensions

5.34 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GCC to integrate that function's code into the code for its callers. This makes execution faster by eliminating the function-call overhead; in addition, if any of the actual argument values are constant, their known values may permit simplifications at compile time so that not all of the inline function's code needs to be included. The effect on code size is less predictable; object code may be larger or smaller with function inlining, depending on the particular case. Inlining of functions is an optimization and it really “works” only in optimizing compilation. If you don't use -O, no function is really inline.

Inline functions are included in the ISO C99 standard, but there are currently substantial differences between what GCC implements and what the ISO C99 standard requires.

To declare a function inline, use the inline keyword in its declaration, like this:

     inline int
     inc (int *a)
     {
       (*a)++;
     }

(If you are writing a header file to be included in ISO C programs, write __inline__ instead of inline. See Alternate Keywords.) You can also make all “simple enough” functions inline with the option -finline-functions.

Note that certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: use of varargs, use of alloca, use of variable sized data types (see Variable Length), use of computed goto (see Labels as Values), use of nonlocal goto, and nested functions (see Nested Functions). Using -Winline will warn when a function marked inline could not be substituted, and will give the reason for the failure.

Note that in C and Objective-C, unlike C++, the inline keyword does not affect the linkage of the function.

GCC automatically inlines member functions defined within the class body of C++ programs even if they are not explicitly declared inline. (You can override this with -fno-default-inline; see Options Controlling C++ Dialect.)

When a function is both inline and static, if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for the function, unless you specify the option -fkeep-inline-functions. Some calls cannot be integrated for various reasons (in particular, calls that precede the function's definition cannot be integrated, and neither can recursive calls within the definition). If there is a nonintegrated call, then the function is compiled to assembler code as usual. The function must also be compiled as usual if the program refers to its address, because that can't be inlined.

When an inline function is not static, then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be integrated. Therefore, a non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition (lacking inline and extern) in a library file. The definition in the header file will cause most calls to the function to be inlined. If any uses of the function remain, they will refer to the single copy in the library.

Since GCC eventually will implement ISO C99 semantics for inline functions, it is best to use static inline only to guarantee compatibility. (The existing semantics will remain available when -std=gnu89 is specified, but eventually the default will be -std=gnu99 and that will implement the C99 semantics, though it does not do so yet.)

GCC does not inline any functions when not optimizing unless you specify the always_inline attribute for the function, like this:

     /* Prototype.  */
     inline void foo (const char) __attribute__((always_inline));


Next: , Previous: Inline, Up: C Extensions

5.35 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can specify the operands of the instruction using C expressions. This means you need not guess which registers or memory locations will contain the data you want to use.

You must specify an assembler instruction template much like what appears in a machine description, plus an operand constraint string for each operand.

For example, here is how to use the 68881's fsinx instruction:

     asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output operand. Each has "f" as its operand constraint, saying that a floating point register is required. The = in =f indicates that the operand is an output; all output operands' constraints must use =. The constraints use the same language used in the machine description (see Constraints).

Each operand is described by an operand-constraint string followed by the C expression in parentheses. A colon separates the assembler template from the first output operand and another separates the last output operand from the first input, if any. Commas separate the operands within each group. The total number of operands is currently limited to 30; this limitation may be lifted in some future version of GCC.

If there are no output operands but there are input operands, you must place two consecutive colons surrounding the place where the output operands would go.

As of GCC version 3.1, it is also possible to specify input and output operands using symbolic names which can be referenced within the assembler code. These names are specified inside square brackets preceding the constraint string, and can be referenced inside the assembler code using %[name] instead of a percentage sign followed by the operand number. Using named operands the above example could look like:

     asm ("fsinx %[angle],%[output]"
          : [output] "=f" (result)
          : [angle] "f" (angle));

Note that the symbolic operand names have no relation whatsoever to other C identifiers. You may use any name you like, even those of existing C symbols, but you must ensure that no two operands within the same assembler construct use the same symbolic name.

Output operand expressions must be lvalues; the compiler can check this. The input operands need not be lvalues. The compiler cannot check whether the operands have data types that are reasonable for the instruction being executed. It does not parse the assembler instruction template and does not know what it means or even whether it is valid assembler input. The extended asm feature is most often used for machine instructions the compiler itself does not know exist. If the output expression cannot be directly addressed (for example, it is a bit-field), your constraint must allow a register. In that case, GCC will use the register as the output of the asm, and then store that register into the output.

The ordinary output operands must be write-only; GCC will assume that the values in these operands before the instruction are dead and need not be generated. Extended asm supports input-output or read-write operands. Use the constraint character + to indicate such an operand and list it with the output operands.

When the constraints for the read-write operand (or the operand in which only some of the bits are to be changed) allows a register, you may, as an alternative, logically split its function into two separate operands, one input operand and one write-only output operand. The connection between them is expressed by constraints which say they need to be in the same location when the instruction executes. You can use the same C expression for both operands, or different expressions. For example, here we write the (fictitious) combine instruction with bar as its read-only source operand and foo as its read-write destination:

     asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint "0" for operand 1 says that it must occupy the same location as operand 0. A number in constraint is allowed only in an input operand and it must refer to an output operand.

Only a number in the constraint can guarantee that one operand will be in the same place as another. The mere fact that foo is the value of both operands is not enough to guarantee that they will be in the same place in the generated assembler code. The following would not work reliably:

     asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different registers; GCC knows no reason not to do so. For example, the compiler might find a copy of the value of foo in one register and use it for operand 1, but generate the output operand 0 in a different register (copying it afterward to foo's own address). Of course, since the register for operand 1 is not even mentioned in the assembler code, the result will not work, but GCC can't tell that.

As of GCC version 3.1, one may write [name] instead of the operand number for a matching constraint. For example:

     asm ("cmoveq %1,%2,%[result]"
          : [result] "=r"(result)
          : "r" (test), "r"(new), "[result]"(old));

Some instructions clobber specific hard registers. To describe this, write a third colon after the input operands, followed by the names of the clobbered hard registers (given as strings). Here is a realistic example for the VAX:

     asm volatile ("movc3 %0,%1,%2"
                   : /* no outputs */
                   : "g" (from), "g" (to), "g" (count)
                   : "r0", "r1", "r2", "r3", "r4", "r5");

You may not write a clobber description in a way that overlaps with an input or output operand. For example, you may not have an operand describing a register class with one member if you mention that register in the clobber list. Variables declared to live in specific registers (see Explicit Reg Vars), and used as asm input or output operands must have no part mentioned in the clobber description. There is no way for you to specify that an input operand is modified without also specifying it as an output operand. Note that if all the output operands you specify are for this purpose (and hence unused), you will then also need to specify volatile for the asm construct, as described below, to prevent GCC from deleting the asm statement as unused.

If you refer to a particular hardware register from the assembler code, you will probably have to list the register after the third colon to tell the compiler the register's value is modified. In some assemblers, the register names begin with %; to produce one % in the assembler code, you must write %% in the input.

If your assembler instruction can alter the condition code register, add cc to the list of clobbered registers. GCC on some machines represents the condition codes as a specific hardware register; cc serves to name this register. On other machines, the condition code is handled differently, and specifying cc has no effect. But it is valid no matter what the machine.

If your assembler instructions access memory in an unpredictable fashion, add memory to the list of clobbered registers. This will cause GCC to not keep memory values cached in registers across the assembler instruction and not optimize stores or loads to that memory. You will also want to add the volatile keyword if the memory affected is not listed in the inputs or outputs of the asm, as the memory clobber does not count as a side-effect of the asm. If you know how large the accessed memory is, you can add it as input or output but if this is not known, you should add memory. As an example, if you access ten bytes of a string, you can use a memory input like:

     {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}.

Note that in the following example the memory input is necessary, otherwise GCC might optimize the store to x away:

     int foo ()
     {
       int x = 42;
       int *y = &x;
       int result;
       asm ("magic stuff accessing an 'int' pointed to by '%1'"
             "=&d" (r) : "a" (y), "m" (*y));
       return result;
     }

You can put multiple assembler instructions together in a single asm template, separated by the characters normally used in assembly code for the system. A combination that works in most places is a newline to break the line, plus a tab character to move to the instruction field (written as \n\t). Sometimes semicolons can be used, if the assembler allows semicolons as a line-breaking character. Note that some assembler dialects use semicolons to start a comment. The input operands are guaranteed not to use any of the clobbered registers, and neither will the output operands' addresses, so you can read and write the clobbered registers as many times as you like. Here is an example of multiple instructions in a template; it assumes the subroutine _foo accepts arguments in registers 9 and 10:

     asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
          : /* no outputs */
          : "g" (from), "g" (to)
          : "r9", "r10");

Unless an output operand has the & constraint modifier, GCC may allocate it in the same register as an unrelated input operand, on the assumption the inputs are consumed before the outputs are produced. This assumption may be false if the assembler code actually consists of more than one instruction. In such a case, use & for each output operand that may not overlap an input. See Modifiers.

If you want to test the condition code produced by an assembler instruction, you must include a branch and a label in the asm construct, as follows:

     asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
          : "g" (result)
          : "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers do.

Speaking of labels, jumps from one asm to another are not supported. The compiler's optimizers do not know about these jumps, and therefore they cannot take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in macros that look like functions. For example,

     #define sin(x)       \
     ({ double __value, __arg = (x);   \
        asm ("fsinx %1,%0": "=f" (__value): "f" (__arg));  \
        __value; })

Here the variable __arg is used to make sure that the instruction operates on a proper double value, and to accept only those arguments x which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data type is to use a cast in the asm. This is different from using a variable __arg in that it converts more different types. For example, if the desired type were int, casting the argument to int would accept a pointer with no complaint, while assigning the argument to an int variable named __arg would warn about using a pointer unless the caller explicitly casts it.

If an asm has output operands, GCC assumes for optimization purposes the instruction has no side effects except to change the output operands. This does not mean instructions with a side effect cannot be used, but you must be careful, because the compiler may eliminate them if the output operands aren't used, or move them out of loops, or replace two with one if they constitute a common subexpression. Also, if your instruction does have a side effect on a variable that otherwise appears not to change, the old value of the variable may be reused later if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined, by writing the keyword volatile after the asm. For example:

     #define get_and_set_priority(new)              \
     ({ int __old;                                  \
        asm volatile ("get_and_set_priority %0, %1" \
                      : "=g" (__old) : "g" (new));  \
        __old; })

If you write an asm instruction with no outputs, GCC will know the instruction has side-effects and will not delete the instruction or move it outside of loops.

The volatile keyword indicates that the instruction has important side-effects. GCC will not delete a volatile asm if it is reachable. (The instruction can still be deleted if GCC can prove that control-flow will never reach the location of the instruction.) In addition, GCC will not reschedule instructions across a volatile asm instruction. For example:

     *(volatile int *)addr = foo;
     asm volatile ("eieio" : : );

Assume addr contains the address of a memory mapped device register. The PowerPC eieio instruction (Enforce In-order Execution of I/O) tells the CPU to make sure that the store to that device register happens before it issues any other I/O.

Note that even a volatile asm instruction can be moved in ways that appear insignificant to the compiler, such as across jump instructions. You can't expect a sequence of volatile asm instructions to remain perfectly consecutive. If you want consecutive output, use a single asm. Also, GCC will perform some optimizations across a volatile asm instruction; GCC does not “forget everything” when it encounters a volatile asm instruction the way some other compilers do.

An asm instruction without any operands or clobbers (an “old style” asm) will be treated identically to a volatile asm instruction.

It is a natural idea to look for a way to give access to the condition code left by the assembler instruction. However, when we attempted to implement this, we found no way to make it work reliably. The problem is that output operands might need reloading, which would result in additional following “store” instructions. On most machines, these instructions would alter the condition code before there was time to test it. This problem doesn't arise for ordinary “test” and “compare” instructions because they don't have any output operands.

For reasons similar to those described above, it is not possible to give an assembler instruction access to the condition code left by previous instructions.

If you are writing a header file that should be includable in ISO C programs, write __asm__ instead of asm. See Alternate Keywords.

5.35.1 i386 floating point asm operands

There are several rules on the usage of stack-like regs in asm_operands insns. These rules apply only to the operands that are stack-like regs:

  1. Given a set of input regs that die in an asm_operands, it is necessary to know which are implicitly popped by the asm, and which must be explicitly popped by gcc.

    An input reg that is implicitly popped by the asm must be explicitly clobbered, unless it is constrained to match an output operand.

  2. For any input reg that is implicitly popped by an asm, it is necessary to know how to adjust the stack to compensate for the pop. If any non-popped input is closer to the top of the reg-stack than the implicitly popped reg, it would not be possible to know what the stack looked like—it's not clear how the rest of the stack “slides up”.

    All implicitly popped input regs must be closer to the top of the reg-stack than any input that is not implicitly popped.

    It is possible that if an input dies in an insn, reload might use the input reg for an output reload. Consider this example:

              asm ("foo" : "=t" (a) : "f" (b));
         

    This asm says that input B is not popped by the asm, and that the asm pushes a result onto the reg-stack, i.e., the stack is one deeper after the asm than it was before. But, it is possible that reload will think that it can use the same reg for both the input and the output, if input B dies in this insn.

    If any input operand uses the f constraint, all output reg constraints must use the & earlyclobber.

    The asm above would be written as

              asm ("foo" : "=&t" (a) : "f" (b));
         
  3. Some operands need to be in particular places on the stack. All output operands fall in this category—there is no other way to know which regs the outputs appear in unless the user indicates this in the constraints.

    Output operands must specifically indicate which reg an output appears in after an asm. =f is not allowed: the operand constraints must select a class with a single reg.

  4. Output operands may not be “inserted” between existing stack regs. Since no 387 opcode uses a read/write operand, all output operands are dead before the asm_operands, and are pushed by the asm_operands. It makes no sense to push anywhere but the top of the reg-stack.

    Output operands must start at the top of the reg-stack: output operands may not “skip” a reg.

  5. Some asm statements may need extra stack space for internal calculations. This can be guaranteed by clobbering stack registers unrelated to the inputs and outputs.

Here are a couple of reasonable asms to want to write. This asm takes one input, which is internally popped, and produces two outputs.

     asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));

This asm takes two inputs, which are popped by the fyl2xp1 opcode, and replaces them with one output. The user must code the st(1) clobber for reg-stack.c to know that fyl2xp1 pops both inputs.

     asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");


Next: , Previous: Extended Asm, Up: C Extensions

5.36 Constraints for asm Operands

Here are specific details on what constraint letters you can use with asm operands. Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a memory reference, and which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match.


Next: , Up: Constraints

5.36.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind of operand that is permitted. Here are the letters that are allowed:

whitespace
Whitespace characters are ignored and can be inserted at any position except the first. This enables each alternative for different operands to be visually aligned in the machine description even if they have different number of constraints and modifiers.


m
A memory operand is allowed, with any kind of address that the machine supports in general.


o
A memory operand is allowed, but only if the address is offsettable. This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine mode) may be added to the address and the result is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that is the sum of a register and a constant (as long as a slightly larger constant is also within the range of address-offsets supported by the machine); but an autoincrement or autodecrement address is not offsettable. More complicated indirect/indexed addresses may or may not be offsettable depending on the other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the constraint letter o is valid only when accompanied by both < (if the target machine has predecrement addressing) and > (if the target machine has preincrement addressing).


V
A memory operand that is not offsettable. In other words, anything that would fit the m constraint but not the o constraint.


<
A memory operand with autodecrement addressing (either predecrement or postdecrement) is allowed.


>
A memory operand with autoincrement addressing (either preincrement or postincrement) is allowed.


r
A register operand is allowed provided that it is in a general register.


i
An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time.


n
An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use n rather than i.


I, J, K, ... P
Other letters in the range I through P may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the 68000, I is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions.


E
An immediate floating operand (expression code const_double) is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running).


F
An immediate floating operand (expression code const_double or const_vector) is allowed.


G, H
G and H may be defined in a machine-dependent fashion to permit immediate floating operands in particular ranges of values.


s
An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value not known at compile time, it certainly must allow any known value. So why use s instead of i? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between −128 and 127, better code results from loading the value into a register and using the register. This is because the load into the register can be done with a moveq instruction. We arrange for this to happen by defining the letter K to mean “any integer outside the range −128 to 127”, and then specifying Ks in the operand constraints.


g
Any register, memory or immediate integer operand is allowed, except for registers that are not general registers.


X
Any operand whatsoever is allowed.


0, 1, 2, ... 9
An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last.

This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a single decimal integer. There is scant chance for ambiguity, since to-date it has never been desirable that 10 be interpreted as matching either operand 1 or operand 0. Should this be desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the assembler has only a single operand that fills two roles which asm distinguishes. For example, an add instruction uses two input operands and an output operand, but on most CISC machines an add instruction really has only two operands, one of them an input-output operand:

          addl #35,r12
     

Matching constraints are used in these circumstances. More precisely, the two operands that match must include one input-only operand and one output-only operand. Moreover, the digit must be a smaller number than the number of the operand that uses it in the constraint.


p
An operand that is a valid memory address is allowed. This is for “load address” and “push address” instructions.

p in the constraint must be accompanied by address_operand as the predicate in the match_operand. This predicate interprets the mode specified in the match_operand as the mode of the memory reference for which the address would be valid.


other-letters
Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand types. d, a and f are defined on the 68000/68020 to stand for data, address and floating point registers.


Next: , Previous: Simple Constraints, Up: Constraints

5.36.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For example, on the 68000, a logical-or instruction can combine register or an immediate value into memory, or it can combine any kind of operand into a register; but it cannot combine one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be described by a series of letters for each operand. The overall constraint for an operand is made from the letters for this operand from the first alternative, a comma, the letters for this operand from the second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many instructions must be added to copy the operands so that that alternative applies. The alternative requiring the least copying is chosen. If two alternatives need the same amount of copying, the one that comes first is chosen. These choices can be altered with the ? and ! characters:

?
Disparage slightly the alternative that the ? appears in, as a choice when no alternative applies exactly. The compiler regards this alternative as one unit more costly for each ? that appears in it.


!
Disparage severely the alternative that the ! appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used.


Next: , Previous: Multi-Alternative, Up: Constraints

5.36.3 Constraint Modifier Characters

Here are constraint modifier characters.

=
Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data.


+
Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and which are outputs from it. = identifies an output; + identifies an operand that is both input and output; all other operands are assumed to be input only.

If you specify = or + in a constraint, you put it in the first character of the constraint string.


&
Means (in a particular alternative) that this operand is an earlyclobber operand, which is modified before the instruction is finished using the input operands. Therefore, this operand may not lie in a register that is used as an input operand or as part of any memory address.

& applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative requires & while others do not. See, for example, the movdf insn of the 68000.

An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. See, for example, the mulsi3 insn of the ARM.

& does not obviate the need to write =.


%
Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. GCC can only handle one commutative pair in an asm; if you use more, the compiler may fail.


#
Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences.


*
Says that the following character should be ignored when choosing register preferences. * has no effect on the meaning of the constraint as a constraint, and no effect on reloading.


Previous: Modifiers, Up: Constraints

5.36.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments, since they will convey meaning more readily to people reading your code. Failing that, use the constraint letters that usually have very similar meanings across architectures. The most commonly used constraints are m and r (for memory and general-purpose registers respectively; see Simple Constraints), and I, usually the letter indicating the most common immediate-constant format.

For each machine architecture, the config/machine/machine.h file defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as for asm statements; therefore, some of the constraints are not particularly interesting for asm. The constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).
CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point constants of word size or smaller precision (usually upper case).
CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point constants and for constants of greater than word size precision (usually upper case).
EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not required, and is only defined for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best way to be certain you have the right constraints. However, here is a summary of the machine-dependent constraints available on some particular machines.

ARM family—arm.h
f
Floating-point register
F
One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 or 10.0
G
Floating-point constant that would satisfy the constraint F if it were negated
I
Integer that is valid as an immediate operand in a data processing instruction. That is, an integer in the range 0 to 255 rotated by a multiple of 2
J
Integer in the range −4095 to 4095
K
Integer that satisfies constraint I when inverted (ones complement)
L
Integer that satisfies constraint I when negated (twos complement)
M
Integer in the range 0 to 32
Q
A memory reference where the exact address is in a single register (`m' is preferable for asm statements)
R
An item in the constant pool
S
A symbol in the text segment of the current file

AVR family—avr.h
l
Registers from r0 to r15
a
Registers from r16 to r23
d
Registers from r16 to r31
w
Registers from r24 to r31. These registers can be used in adiw command
e
Pointer register (r26–r31)
b
Base pointer register (r28–r31)
q
Stack pointer register (SPH:SPL)
t
Temporary register r0
x
Register pair X (r27:r26)
y
Register pair Y (r29:r28)
z
Register pair Z (r31:r30)
I
Constant greater than −1, less than 64
J
Constant greater than −64, less than 1
K
Constant integer 2
L
Constant integer 0
M
Constant that fits in 8 bits
N
Constant integer −1
O
Constant integer 8, 16, or 24
P
Constant integer 1
G
A floating point constant 0.0

IBM RS6000—rs6000.h
b
Address base register
f
Floating point register
h
MQ, CTR, or LINK register
q
MQ register
c
CTR register
l
LINK register
x
CR register (condition register) number 0
y
CR register (condition register)
z
FPMEM stack memory for FPR-GPR transfers
I
Signed 16-bit constant
J
Unsigned 16-bit constant shifted left 16 bits (use L instead for SImode constants)
K
Unsigned 16-bit constant
L
Signed 16-bit constant shifted left 16 bits
M
Constant larger than 31
N
Exact power of 2
O
Zero
P
Constant whose negation is a signed 16-bit constant
G
Floating point constant that can be loaded into a register with one instruction per word
Q
Memory operand that is an offset from a register (m is preferable for asm statements)
R
AIX TOC entry
S
Constant suitable as a 64-bit mask operand
T
Constant suitable as a 32-bit mask operand
U
System V Release 4 small data area reference

Intel 386—i386.h
q
a, b, c, or d register for the i386. For x86-64 it is equivalent to r class. (for 8-bit instructions that do not use upper halves)
Q
a, b, c, or d register. (for 8-bit instructions, that do use upper halves)
R
Legacy register—equivalent to r class in i386 mode. (for non-8-bit registers used together with 8-bit upper halves in a single instruction)
A
Specifies the a or d registers. This is primarily useful for 64-bit integer values (when in 32-bit mode) intended to be returned with the d register holding the most significant bits and the a register holding the least significant bits.
f
Floating point register
t
First (top of stack) floating point register
u
Second floating point register
a
a register
b
b register
c
c register
C
Specifies constant that can be easily constructed in SSE register without loading it from memory.
d
d register
D
di register
S
si register
x
xmm SSE register
y
MMX register
I
Constant in range 0 to 31 (for 32-bit shifts)
J
Constant in range 0 to 63 (for 64-bit shifts)
K
0xff
L
0xffff
M
0, 1, 2, or 3 (shifts for lea instruction)
N
Constant in range 0 to 255 (for out instruction)
Z
Constant in range 0 to 0xffffffff or symbolic reference known to fit specified range. (for using immediates in zero extending 32-bit to 64-bit x86-64 instructions)
e
Constant in range −2147483648 to 2147483647 or symbolic reference known to fit specified range. (for using immediates in 64-bit x86-64 instructions)
G
Standard 80387 floating point constant

Intel 960—i960.h
f
Floating point register (fp0 to fp3)
l
Local register (r0 to r15)
b
Global register (g0 to g15)
d
Any local or global register
I
Integers from 0 to 31
J
0
K
Integers from −31 to 0
G
Floating point 0
H
Floating point 1

Intel IA-64—ia64.h
a
General register r0 to r3 for addl instruction
b
Branch register
c
Predicate register (c as in “conditional”)
d
Application register residing in M-unit
e
Application register residing in I-unit
f
Floating-point register
m
Memory operand. Remember that m allows postincrement and postdecrement which require printing with %Pn on IA-64. Use S to disallow postincrement and postdecrement.
G
Floating-point constant 0.0 or 1.0
I
14-bit signed integer constant
J
22-bit signed integer constant
K
8-bit signed integer constant for logical instructions
L
8-bit adjusted signed integer constant for compare pseudo-ops
M
6-bit unsigned integer constant for shift counts
N
9-bit signed integer constant for load and store postincrements
O
The constant zero
P
0 or -1 for dep instruction
Q
Non-volatile memory for floating-point loads and stores
R
Integer constant in the range 1 to 4 for shladd instruction
S
Memory operand except postincrement and postdecrement

FRV—frv.h
a
Register in the class ACC_REGS (acc0 to acc7).
b
Register in the class EVEN_ACC_REGS (acc0 to acc7).
c
Register in the class CC_REGS (fcc0 to fcc3 and icc0 to icc3).
d
Register in the class GPR_REGS (gr0 to gr63).
e
Register in the class EVEN_REGS (gr0 to gr63). Odd registers are excluded not in the class but through the use of a machine mode larger than 4 bytes.
f
Register in the class FPR_REGS (fr0 to fr63).
h
Register in the class FEVEN_REGS (fr0 to fr63). Odd registers are excluded not in the class but through the use of a machine mode larger than 4 bytes.
l
Register in the class LR_REG (the lr register).
q
Register in the class QUAD_REGS (gr2 to gr63). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes.
t
Register in the class ICC_REGS (icc0 to icc3).
u
Register in the class FCC_REGS (fcc0 to fcc3).
v
Register in the class ICR_REGS (cc4 to cc7).
w
Register in the class FCR_REGS (cc0 to cc3).
x
Register in the class QUAD_FPR_REGS (fr0 to fr63). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes.
z
Register in the class SPR_REGS (lcr and lr).
A
Register in the class QUAD_ACC_REGS (acc0 to acc7).
B
Register in the class ACCG_REGS (accg0 to accg7).
C
Register in the class CR_REGS (cc0 to cc7).
G
Floating point constant zero
I
6-bit signed integer constant
J
10-bit signed integer constant
L
16-bit signed integer constant
M
16-bit unsigned integer constant
N
12-bit signed integer constant that is negative—i.e. in the range of −2048 to −1
O
Constant zero
P
12-bit signed integer constant that is greater than zero—i.e. in the range of 1 to 2047.

IP2K—ip2k.h
a
DP or IP registers (general address)
f
IP register
j
IPL register
k
IPH register
b
DP register
y
DPH register
z
DPL register
q
SP register
c
DP or SP registers (offsettable address)
d
Non-pointer registers (not SP, DP, IP)
u
Non-SP registers (everything except SP)
R
Indirect thru IP - Avoid this except for QImode, since we can't access extra bytes
S
Indirect thru SP or DP with short displacement (0..127)
T
Data-section immediate value
I
Integers from −255 to −1
J
Integers from 0 to 7—valid bit number in a register
K
Integers from 0 to 127—valid displacement for addressing mode
L
Integers from 1 to 127
M
Integer −1
N
Integer 1
O
Zero
P
Integers from 0 to 255

MIPS—mips.h
d
General-purpose integer register
f
Floating-point register (if available)
h
Hi register
l
Lo register
x
Hi or Lo register
y
General-purpose integer register
z
Floating-point status register
I
Signed 16-bit constant (for arithmetic instructions)
J
Zero
K
Zero-extended 16-bit constant (for logic instructions)
L
Constant with low 16 bits zero (can be loaded with lui)
M
32-bit constant which requires two instructions to load (a constant which is not I, K, or L)
N
Negative 16-bit constant
O
Exact power of two
P
Positive 16-bit constant
G
Floating point zero
Q
Memory reference that can be loaded with more than one instruction (m is preferable for asm statements)
R
Memory reference that can be loaded with one instruction (m is preferable for asm statements)
S
Memory reference in external OSF/rose PIC format (m is preferable for asm statements)

Motorola 680x0—m68k.h
a
Address register
d
Data register
f
68881 floating-point register, if available
x
Sun FPA (floating-point) register, if available
y
First 16 Sun FPA registers, if available
I
Integer in the range 1 to 8
J
16-bit signed number
K
Signed number whose magnitude is greater than 0x80
L
Integer in the range −8 to −1
M
Signed number whose magnitude is greater than 0x100
G
Floating point constant that is not a 68881 constant
H
Floating point constant that can be used by Sun FPA

Motorola 68HC11 & 68HC12 families—m68hc11.h
a
Register 'a'
b
Register 'b'
d
Register 'd'
q
An 8-bit register
t
Temporary soft register _.tmp
u
A soft register _.d1 to _.d31
w
Stack pointer register
x
Register 'x'
y
Register 'y'
z
Pseudo register 'z' (replaced by 'x' or 'y' at the end)
A
An address register: x, y or z
B
An address register: x or y
D
Register pair (x:d) to form a 32-bit value
L
Constants in the range −65536 to 65535
M
Constants whose 16-bit low part is zero
N
Constant integer 1 or −1
O
Constant integer 16
P
Constants in the range −8 to 2

SPARC—sparc.h
f
Floating-point register on the SPARC-V8 architecture and lower floating-point register on the SPARC-V9 architecture.
e
Floating-point register. It is equivalent to f on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture.
c
Floating-point condition code register.
d
Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available.
b
Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available.
h
64-bit global or out register for the SPARC-V8+ architecture.
I
Signed 13-bit constant
J
Zero
K
32-bit constant with the low 12 bits clear (a constant that can be loaded with the sethi instruction)
L
A constant in the range supported by movcc instructions
M
A constant in the range supported by movrcc instructions
N
Same as K, except that it verifies that bits that are not in the lower 32-bit range are all zero. Must be used instead of K for modes wider than SImode
O
The constant 4096
G
Floating-point zero
H
Signed 13-bit constant, sign-extended to 32 or 64 bits
Q
Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction
R
Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction
S
Floating-point constant whose integral representation can be moved into an integer register using a high/lo_sum instruction sequence
T
Memory address aligned to an 8-byte boundary
U
Even register
W
Memory address for e constraint registers.

TMS320C3x/C4x—c4x.h
a
Auxiliary (address) register (ar0-ar7)
b
Stack pointer register (sp)
c
Standard (32-bit) precision integer register
f
Extended (40-bit) precision register (r0-r11)
k
Block count register (bk)
q
Extended (40-bit) precision low register (r0-r7)
t
Extended (40-bit) precision register (r0-r1)
u
Extended (40-bit) precision register (r2-r3)
v
Repeat count register (rc)
x
Index register (ir0-ir1)
y
Status (condition code) register (st)
z
Data page register (dp)
G
Floating-point zero
H
Immediate 16-bit floating-point constant
I
Signed 16-bit constant
J
Signed 8-bit constant
K
Signed 5-bit constant
L
Unsigned 16-bit constant
M
Unsigned 8-bit constant
N
Ones complement of unsigned 16-bit constant
O
High 16-bit constant (32-bit constant with 16 LSBs zero)
Q
Indirect memory reference with signed 8-bit or index register displacement
R
Indirect memory reference with unsigned 5-bit displacement
S
Indirect memory reference with 1 bit or index register displacement
T
Direct memory reference
U
Symbolic address

S/390 and zSeries—s390.h
a
Address register (general purpose register except r0)
d
Data register (arbitrary general purpose register)
f
Floating-point register
I
Unsigned 8-bit constant (0–255)
J
Unsigned 12-bit constant (0–4095)
K
Signed 16-bit constant (−32768–32767)
L
Unsigned 16-bit constant (0–65535)
Q
Memory reference without index register
S
Symbolic constant suitable for use with the larl instruction

Xstormy16—stormy16.h
a
Register r0.
b
Register r1.
c
Register r2.
d
Register r8.
e
Registers r0 through r7.
t
Registers r0 and r1.
y
The carry register.
z
Registers r8 and r9.
I
A constant between 0 and 3 inclusive.
J
A constant that has exactly one bit set.
K
A constant that has exactly one bit clear.
L
A constant between 0 and 255 inclusive.
M
A constant between −255 and 0 inclusive.
N
A constant between −3 and 0 inclusive.
O
A constant between 1 and 4 inclusive.
P
A constant between −4 and −1 inclusive.
Q
A memory reference that is a stack push.
R
A memory reference that is a stack pop.
S
A memory reference that refers to a constant address of known value.
T
The register indicated by Rx (not implemented yet).
U
A constant that is not between 2 and 15 inclusive.

Xtensa—xtensa.h
a
General-purpose 32-bit register
b
One-bit boolean register
A
MAC16 40-bit accumulator register
I
Signed 12-bit integer constant, for use in MOVI instructions
J
Signed 8-bit integer constant, for use in ADDI instructions
K
Integer constant valid for BccI instructions
L
Unsigned constant valid for BccUI instructions


Next: , Previous: Constraints, Up: C Extensions

5.37 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by writing the asm (or __asm__) keyword after the declarator as follows:

     int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should be myfoo rather than the usual _foo.

On systems where an underscore is normally prepended to the name of a C function or variable, this feature allows you to define names for the linker that do not start with an underscore.

It does not make sense to use this feature with a non-static local variable since such variables do not have assembler names. If you are trying to put the variable in a particular register, see Explicit Reg Vars. GCC presently accepts such code with a warning, but will probably be changed to issue an error, rather than a warning, in the future.

You cannot use asm in this way in a function definition; but you can get the same effect by writing a declaration for the function before its definition and putting asm there, like this:

     extern func () asm ("FUNC");
     
     func (x, y)
          int x, y;
     /* ... */

It is up to you to make sure that the assembler names you choose do not conflict with any other assembler symbols. Also, you must not use a register name; that would produce completely invalid assembler code. GCC does not as yet have the ability to store static variables in registers. Perhaps that will be added.


Next: , Previous: Asm Labels, Up: C Extensions

5.38 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can also specify the register in which an ordinary register variable should be allocated.


Next: , Up: Explicit Reg Vars

5.38.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:

     register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is normally saved and restored by function calls on your machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your program according to cpu type. The register a5 would be a good choice on a 68000 for a variable of pointer type. On machines with register windows, be sure to choose a “global” register that is not affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the registers; then you would need additional conditionals. For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should choose and how to enable you to guide the choice. No solution is evident.

Defining a global register variable in a certain register reserves that register entirely for this use, at least within the current compilation. The register will not be allocated for any other purpose in the functions in the current compilation. The register will not be saved and restored by these functions. Stores into this register are never deleted even if they would appear to be dead, but references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than one thread of control, because the system library routines may temporarily use the register for other things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such function foo by way of a third function lose that was compiled without knowledge of this variable (i.e. in a different source file in which the variable wasn't declared). This is because lose might save the register and put some other value there. For example, you can't expect a global register variable to be available in the comparison-function that you pass to qsort, since qsort might have put something else in that register. (If you are prepared to recompile qsort with the same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your global register variable, so that they will not use that register for any other purpose, then it suffices to specify the compiler option -ffixed-reg. You need not actually add a global register declaration to their source code.

A function which can alter the value of a global register variable cannot safely be called from a function compiled without this variable, because it could clobber the value the caller expects to find there on return. Therefore, the function which is the entry point into the part of the program that uses the global register variable must explicitly save and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register variable the value it had at the time of the setjmp. On some machines, however, longjmp will not change the value of global register variables. To be portable, the function that called setjmp should make other arrangements to save the values of the global register variables, and to restore them in a longjmp. This way, the same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a declaration could appear after function definitions, the declaration would be too late to prevent the register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no means to supply initial contents for a register.

On the SPARC, there are reports that g3 ... g7 are suitable registers, but certain library functions, such as getwd, as well as the subroutines for division and remainder, modify g3 and g4. g1 and g2 are local temporaries.

On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it will not do to use more than a few of those.


Previous: Global Reg Vars, Up: Explicit Reg Vars

5.38.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

     register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax used for defining global register variables, but for a local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific registers are most often useful with explicit assembler instructions (see Extended Asm). Both of these things generally require that you conditionalize your program according to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the registers; then you would need additional conditionals. For example, some 68000 operating systems call this register %a5.

Defining such a register variable does not reserve the register; it remains available for other uses in places where flow control determines the variable's value is not live. However, these registers are made unavailable for use in the reload pass; excessive use of this feature leaves the compiler too few available registers to compile certain functions.

This option does not guarantee that GCC will generate code that has this variable in the register you specify at all times. You may not code an explicit reference to this register in an asm statement and assume it will always refer to this variable.

Stores into local register variables may be deleted when they appear to be dead according to dataflow analysis. References to local register variables may be deleted or moved or simplified.


Next: , Previous: Explicit Reg Vars, Up: C Extensions

5.39 Alternate Keywords

-ansi and the various -std options disable certain keywords. This causes trouble when you want to use GNU C extensions, or a general-purpose header file that should be usable by all programs, including ISO C programs. The keywords asm, typeof and inline are not available in programs compiled with -ansi or -std (although inline can be used in a program compiled with -std=c99). The ISO C99 keyword restrict is only available when -std=gnu99 (which will eventually be the default) or -std=c99 (or the equivalent -std=iso9899:1999) is used.

The way to solve these problems is to put __ at the beginning and end of each problematical keyword. For example, use __asm__ instead of asm, and __inline__ instead of inline.

Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords as macros to replace them with the customary keywords. It looks like this:

     #ifndef __GNUC__
     #define __asm__ asm
     #endif

-pedantic and other options cause warnings for many GNU C extensions. You can prevent such warnings within one expression by writing __extension__ before the expression. __extension__ has no effect aside from this.


Next: , Previous: Alternate Keywords, Up: C Extensions

5.40 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an incomplete type, much like what you get if you write struct foo without describing the elements. A later declaration which does specify the possible values completes the type.

You can't allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.


Next: , Previous: Incomplete Enums, Up: C Extensions

5.41 Function Names as Strings

GCC predefines two magic identifiers to hold the name of the current function. The identifier __FUNCTION__ holds the name of the function as it appears in the source. The identifier __PRETTY_FUNCTION__ holds the name of the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++ function they may be different. For example, this program:

     extern "C" {
     extern int printf (char *, ...);
     }
     
     class a {
      public:
       sub (int i)
         {
           printf ("__FUNCTION__ = %s\n", __FUNCTION__);
           printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
         }
     };
     
     int
     main (void)
     {
       a ax;
       ax.sub (0);
       return 0;
     }

gives this output:

     __FUNCTION__ = sub
     __PRETTY_FUNCTION__ = int  a::sub (int)

The compiler automagically replaces the identifiers with a string literal containing the appropriate name. Thus, they are neither preprocessor macros, like __FILE__ and __LINE__, nor variables. This means that they catenate with other string literals, and that they can be used to initialize char arrays. For example

     char here[] = "Function " __FUNCTION__ " in " __FILE__;

On the other hand, #ifdef __FUNCTION__ does not have any special meaning inside a function, since the preprocessor does not do anything special with the identifier __FUNCTION__.

Note that these semantics are deprecated, and that GCC 3.2 will handle __FUNCTION__ and __PRETTY_FUNCTION__ the same way as __func__. __func__ is defined by the ISO standard C99:

     The identifier __func__ is implicitly declared by the translator
     as if, immediately following the opening brace of each function
     definition, the declaration
     
          static const char __func__[] = "function-name";
     

appeared, where function-name is the name of the lexically-enclosing function. This name is the unadorned name of the function.

By this definition, __func__ is a variable, not a string literal. In particular, __func__ does not catenate with other string literals.

In C++, __FUNCTION__ and __PRETTY_FUNCTION__ are variables, declared in the same way as __func__.


Next: , Previous: Function Names, Up: C Extensions

5.42 Getting the Return or Frame Address of a Function

These functions may be used to get information about the callers of a function.

— Built-in Function: void * __builtin_return_address (unsigned int level)

This function returns the return address of the current function, or of one of its callers. The level argument is number of frames to scan up the call stack. A value of 0 yields the return address of the current function, a value of 1 yields the return address of the caller of the current function, and so forth. When inlining the expected behavior is that the function will return the address of the function that will be returned to. To work around this behavior use the noinline function attribute.

The level argument must be a constant integer.

On some machines it may be impossible to determine the return address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function will return 0 or a random value. In addition, __builtin_frame_address may be used to determine if the top of the stack has been reached.

This function should only be used with a nonzero argument for debugging purposes.

— Built-in Function: void * __builtin_frame_address (unsigned int level)

This function is similar to __builtin_return_address, but it returns the address of the function frame rather than the return address of the function. Calling __builtin_frame_address with a value of 0 yields the frame address of the current function, a value of 1 yields the frame address of the caller of the current function, and so forth.

The frame is the area on the stack which holds local variables and saved registers. The frame address is normally the address of the first word pushed on to the stack by the function. However, the exact definition depends upon the processor and the calling convention. If the processor has a dedicated frame pointer register, and the function has a frame, then __builtin_frame_address will return the value of the frame pointer register.

On some machines it may be impossible to determine the frame address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function will return 0 if the first frame pointer is properly initialized by the startup code.

This function should only be used with a nonzero argument for debugging purposes.


Next: , Previous: Return Address, Up: C Extensions

5.43 Using vector instructions through built-in functions

On some targets, the instruction set contains SIMD vector instructions that operate on multiple values contained in one large register at the same time. For example, on the i386 the MMX, 3Dnow! and SSE extensions can be used this way.

The first step in using these extensions is to provide the necessary data types. This should be done using an appropriate typedef:

     typedef int v4si __attribute__ ((mode(V4SI)));

The base type int is effectively ignored by the compiler, the actual properties of the new type v4si are defined by the __attribute__. It defines the machine mode to be used; for vector types these have the form VnB; n should be the number of elements in the vector, and B should be the base mode of the individual elements. The following can be used as base modes:

QI
An integer that is as wide as the smallest addressable unit, usually 8 bits.
HI
An integer, twice as wide as a QI mode integer, usually 16 bits.
SI
An integer, four times as wide as a QI mode integer, usually 32 bits.
DI
An integer, eight times as wide as a QI mode integer, usually 64 bits.
SF
A floating point value, as wide as a SI mode integer, usually 32 bits.
DF
A floating point value, as wide as a DI mode integer, usually 64 bits.

Specifying a combination that is not valid for the current architecture will cause gcc to synthesize the instructions using a narrower mode. For example, if you specify a variable of type V4SI and your architecture does not allow for this specific SIMD type, gcc will produce code that uses 4 SIs.

The types defined in this manner can be used with a subset of normal C operations. Currently, gcc will allow using the following operators on these types: +, -, *, /, unary minus.

The operations behave like C++ valarrays. Addition is defined as the addition of the corresponding elements of the operands. For example, in the code below, each of the 4 elements in a will be added to the corresponding 4 elements in b and the resulting vector will be stored in c.

     typedef int v4si __attribute__ ((mode(V4SI)));
     
     v4si a, b, c;
     
     c = a + b;

Subtraction, multiplication, and division operate in a similar manner. Likewise, the result of using the unary minus operator on a vector type is a vector whose elements are the negative value of the corresponding elements in the operand.

You can declare variables and use them in function calls and returns, as well as in assignments and some casts. You can specify a vector type as a return type for a function. Vector types can also be used as function arguments. It is possible to cast from one vector type to another, provided they are of the same size (in fact, you can also cast vectors to and from other datatypes of the same size).

You cannot operate between vectors of different lengths or different signedness without a cast.

A port that supports hardware vector operations, usually provides a set of built-in functions that can be used to operate on vectors. For example, a function to add two vectors and multiply the result by a third could look like this:

     v4si f (v4si a, v4si b, v4si c)
     {
       v4si tmp = __builtin_addv4si (a, b);
       return __builtin_mulv4si (tmp, c);
     }
     


Next: , Previous: Vector Extensions, Up: C Extensions

5.44 Other built-in functions provided by GCC

GCC provides a large number of built-in functions other than the ones mentioned above. Some of these are for internal use in the processing of exceptions or variable-length argument lists and will not be documented here because they may change from time to time; we do not recommend general use of these functions.

The remaining functions are provided for optimization purposes.

GCC includes built-in versions of many of the functions in the standard C library. The versions prefixed with __builtin_ will always be treated as having the same meaning as the C library function even if you specify the -fno-builtin option. (see C Dialect Options) Many of these functions are only optimized in certain cases; if they are not optimized in a particular case, a call to the library function will be emitted.

The functions abort, exit, _Exit and _exit are recognized and presumed not to return, but otherwise are not built in. _exit is not recognized in strict ISO C mode (-ansi, -std=c89 or -std=c99). _Exit is not recognized in strict C89 mode (-ansi or -std=c89). All these functions have corresponding versions prefixed with __builtin_, which may be used even in strict C89 mode.

Outside strict ISO C mode, the functions alloca, bcmp, bzero, index, rindex, ffs, fputs_unlocked, printf_unlocked and fprintf_unlocked may be handled as built-in functions. All these functions have corresponding versions prefixed with __builtin_, which may be used even in strict C89 mode.

The ISO C99 functions conj, conjf, conjl, creal, crealf, creall, cimag, cimagf, cimagl, imaxabs, llabs, snprintf, vscanf, vsnprintf and vsscanf are handled as built-in functions except in strict ISO C90 mode. There are also built-in versions of the ISO C99 functions cosf, cosl, expf, expl, fabsf, fabsl, logf, logl, sinf, sinl, sqrtf, and sqrtl, that are recognized in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them. All these functions have corresponding versions prefixed with __builtin_.

The ISO C90 functions abs, cos, exp, fabs, fprintf, fputs, labs, log, memcmp, memcpy, memset, printf, putchar, puts, scanf, sin, snprintf, sprintf, sqrt, sscanf, strcat, strchr, strcmp, strcpy, strcspn, strlen, strncat, strncmp, strncpy, strpbrk, strrchr, strspn, strstr, vprintf and vsprintf are all recognized as built-in functions unless -fno-builtin is specified (or -fno-builtin-function is specified for an individual function). All of these functions have corresponding versions prefixed with __builtin_.

GCC provides built-in versions of the ISO C99 floating point comparison macros that avoid raising exceptions for unordered operands. They have the same names as the standard macros ( isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered) , with __builtin_ prefixed. We intend for a library implementor to be able to simply #define each standard macro to its built-in equivalent.

— Built-in Function: int __builtin_types_compatible_p (type1, type2)

You can use the built-in function __builtin_types_compatible_p to determine whether two types are the same.

This built-in function returns 1 if the unqualified versions of the types type1 and type2 (which are types, not expressions) are compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions.

This built-in function ignores top level qualifiers (e.g., const, volatile). For example, int is equivalent to const int.

The type int[] and int[5] are compatible. On the other hand, int and char * are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when determining similarity. Consequently, short * is not similar to short **. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible.

An enum type is considered to be compatible with another enum type. For example, enum {foo, bar} is similar to enum {hot, dog}.

You would typically use this function in code whose execution varies depending on the arguments' types. For example:

          #define foo(x)                                                  \
            ({                                                           \
              typeof (x) tmp;                                             \
              if (__builtin_types_compatible_p (typeof (x), long double)) \
                tmp = foo_long_double (tmp);                              \
              else if (__builtin_types_compatible_p (typeof (x), double)) \
                tmp = foo_double (tmp);                                   \
              else if (__builtin_types_compatible_p (typeof (x), float))  \
                tmp = foo_float (tmp);                                    \
              else                                                        \
                abort ();                                                 \
              tmp;                                                        \
            })
     

Note: This construct is only available for C.

— Built-in Function: type __builtin_choose_expr (const_exp, exp1, exp2)

You can use the built-in function __builtin_choose_expr to evaluate code depending on the value of a constant expression. This built-in function returns exp1 if const_exp, which is a constant expression that must be able to be determined at compile time, is nonzero. Otherwise it returns 0.

This built-in function is analogous to the ? : operator in C, except that the expression returned has its type unaltered by promotion rules. Also, the built-in function does not evaluate the expression that was not chosen. For example, if const_exp evaluates to true, exp2 is not evaluated even if it has side-effects.

This built-in function can return an lvalue if the chosen argument is an lvalue.

If exp1 is returned, the return type is the same as exp1's type. Similarly, if exp2 is returned, its return type is the same as exp2.

Example:

          #define foo(x)                                                    \
            __builtin_choose_expr (                                         \
              __builtin_types_compatible_p (typeof (x), double),            \
              foo_double (x),                                               \
              __builtin_choose_expr (                                       \
                __builtin_types_compatible_p (typeof (x), float),           \
                foo_float (x),                                              \
                /* The void expression results in a compile-time error  \
                   when assigning the result to something.  */          \
                (void)0))
     

Note: This construct is only available for C. Furthermore, the unused expression (exp1 or exp2 depending on the value of const_exp) may still generate syntax errors. This may change in future revisions.

— Built-in Function: int __builtin_constant_p (exp)

You can use the built-in function __builtin_constant_p to determine if a value is known to be constant at compile-time and hence that GCC can perform constant-folding on expressions involving that value. The argument of the function is the value to test. The function returns the integer 1 if the argument is known to be a compile-time constant and 0 if it is not known to be a compile-time constant. A return of 0 does not indicate that the value is not a constant, but merely that GCC cannot prove it is a constant with the specified value of the -O option.

You would typically use this function in an embedded application where memory was a critical resource. If you have some complex calculation, you may want it to be folded if it involves constants, but need to call a function if it does not. For example:

          #define Scale_Value(X)      \
            (__builtin_constant_p (X) \
            ? ((X) * SCALE + OFFSET) : Scale (X))
     

You may use this built-in function in either a macro or an inline function. However, if you use it in an inlined function and pass an argument of the function as the argument to the built-in, GCC will never return 1 when you call the inline function with a string constant or compound literal (see Compound Literals) and will not return 1 when you pass a constant numeric value to the inline function unless you specify the -O option.

You may also use __builtin_constant_p in initializers for static data. For instance, you can write

          static const int table[] = {
             __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
             /* ... */
          };
     

This is an acceptable initializer even if EXPRESSION is not a constant expression. GCC must be more conservative about evaluating the built-in in this case, because it has no opportunity to perform optimization.

Previous versions of GCC did not accept this built-in in data initializers. The earliest version where it is completely safe is 3.0.1.

— Built-in Function: long __builtin_expect (long exp, long c)

You may use __builtin_expect to provide the compiler with branch prediction information. In general, you should prefer to use actual profile feedback for this (-fprofile-arcs), as programmers are notoriously bad at predicting how their programs actually perform. However, there are applications in which this data is hard to collect.

The return value is the value of exp, which should be an integral expression. The value of c must be a compile-time constant. The semantics of the built-in are that it is expected that exp == c. For example:

          if (__builtin_expect (x, 0))
            foo ();
     

would indicate that we do not expect to call foo, since we expect x to be zero. Since you are limited to integral expressions for exp, you should use constructions such as

          if (__builtin_expect (ptr != NULL, 1))
            error ();
     

when testing pointer or floating-point values.

— Built-in Function: void __builtin_prefetch (const void *addr, ...)

This function is used to minimize cache-miss latency by moving data into a cache before it is accessed. You can insert calls to __builtin_prefetch into code for which you know addresses of data in memory that is likely to be accessed soon. If the target supports them, data prefetch instructions will be generated. If the prefetch is done early enough before the access then the data will be in the cache by the time it is accessed.

The value of addr is the address of the memory to prefetch. There are two optional arguments, rw and locality. The value of rw is a compile-time constant one or zero; one means that the prefetch is preparing for a write to the memory address and zero, the default, means that the prefetch is preparing for a read. The value locality must be a compile-time constant integer between zero and three. A value of zero means that the data has no temporal locality, so it need not be left in the cache after the access. A value of three means that the data has a high degree of temporal locality and should be left in all levels of cache possible. Values of one and two mean, respectively, a low or moderate degree of temporal locality. The default is three.

          for (i = 0; i < n; i++)
            {
              a[i] = a[i] + b[i];
              __builtin_prefetch (&a[i+j], 1, 1);
              __builtin_prefetch (&b[i+j], 0, 1);
              /* ... */
            }
     

Data prefetch does not generate faults if addr is invalid, but the address expression itself must be valid. For example, a prefetch of p->next will not fault if p->next is not a valid address, but evaluation will fault if p is not a valid address.

If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other code is generated and GCC does not issue a warning.

— Built-in Function: double __builtin_huge_val (void)

Returns a positive infinity, if supported by the floating-point format, else DBL_MAX. This function is suitable for implementing the ISO C macro HUGE_VAL.

— Built-in Function: float __builtin_huge_valf (void)

Similar to __builtin_huge_val, except the return type is float.

— Built-in Function: long double __builtin_huge_vall (void)

Similar to __builtin_huge_val, except the return type is long double.

— Built-in Function: double __builtin_inf (void)

Similar to __builtin_huge_val, except a warning is generated if the target floating-point format does not support infinities. This function is suitable for implementing the ISO C99 macro INFINITY.

— Built-in Function: float __builtin_inff (void)

Similar to __builtin_inf, except the return type is float.

— Built-in Function: long double __builtin_infl (void)

Similar to __builtin_inf, except the return type is long double.

— Built-in Function: double __builtin_nan (const char *str)

This is an implementation of the ISO C99 function nan.

Since ISO C99 defines this function in terms of strtod, which we do not implement, a description of the parsing is in order. The string is parsed as by strtol; that is, the base is recognized by leading 0 or 0x prefixes. The number parsed is placed in the significand such that the least significant bit of the number is at the least significant bit of the significand. The number is truncated to fit the significand field provided. The significand is forced to be a quiet NaN.

This function, if given a string literal, is evaluated early enough that it is considered a compile-time constant.

— Built-in Function: float __builtin_nanf (const char *str)

Similar to __builtin_nan, except the return type is float.

— Built-in Function: long double __builtin_nanl (const char *str)

Similar to __builtin_nan, except the return type is long double.

— Built-in Function: double __builtin_nans (const char *str)

Similar to __builtin_nan, except the significand is forced to be a signaling NaN. The nans function is proposed by WG14 N965.

— Built-in Function: float __builtin_nansf (const char *str)

Similar to __builtin_nans, except the return type is float.

— Built-in Function: long double __builtin_nansl (const char *str)

Similar to __builtin_nans, except the return type is long double.


Next: , Previous: Other Builtins, Up: C Extensions

5.45 Built-in Functions Specific to Particular Target Machines

On some target machines, GCC supports many built-in functions specific to those machines. Generally these generate calls to specific machine instructions, but allow the compiler to schedule those calls.


Next: , Up: Target Builtins

5.45.1 Alpha Built-in Functions

These built-in functions are available for the Alpha family of processors, depending on the command-line switches used.

The following built-in functions are always available. They all generate the machine instruction that is part of the name.

     long __builtin_alpha_implver (void)
     long __builtin_alpha_rpcc (void)
     long __builtin_alpha_amask (long)
     long __builtin_alpha_cmpbge (long, long)
     long __builtin_alpha_extbl (long, long)
     long __builtin_alpha_extwl (long, long)
     long __builtin_alpha_extll (long, long)
     long __builtin_alpha_extql (long, long)
     long __builtin_alpha_extwh (long, long)
     long __builtin_alpha_extlh (long, long)
     long __builtin_alpha_extqh (long, long)
     long __builtin_alpha_insbl (long, long)
     long __builtin_alpha_inswl (long, long)
     long __builtin_alpha_insll (long, long)
     long __builtin_alpha_insql (long, long)
     long __builtin_alpha_inswh (long, long)
     long __builtin_alpha_inslh (long, long)
     long __builtin_alpha_insqh (long, long)
     long __builtin_alpha_mskbl (long, long)
     long __builtin_alpha_mskwl (long, long)
     long __builtin_alpha_mskll (long, long)
     long __builtin_alpha_mskql (long, long)
     long __builtin_alpha_mskwh (long, long)
     long __builtin_alpha_msklh (long, long)
     long __builtin_alpha_mskqh (long, long)
     long __builtin_alpha_umulh (long, long)
     long __builtin_alpha_zap (long, long)
     long __builtin_alpha_zapnot (long, long)

The following built-in functions are always with -mmax or -mcpu=cpu where cpu is pca56 or later. They all generate the machine instruction that is part of the name.

     long __builtin_alpha_pklb (long)
     long __builtin_alpha_pkwb (long)
     long __builtin_alpha_unpkbl (long)
     long __builtin_alpha_unpkbw (long)
     long __builtin_alpha_minub8 (long, long)
     long __builtin_alpha_minsb8 (long, long)
     long __builtin_alpha_minuw4 (long, long)
     long __builtin_alpha_minsw4 (long, long)
     long __builtin_alpha_maxub8 (long, long)
     long __builtin_alpha_maxsb8 (long, long)
     long __builtin_alpha_maxuw4 (long, long)
     long __builtin_alpha_maxsw4 (long, long)
     long __builtin_alpha_perr (long, long)

The following built-in functions are always with -mcix or -mcpu=cpu where cpu is ev67 or later. They all generate the machine instruction that is part of the name.

     long __builtin_alpha_cttz (long)
     long __builtin_alpha_ctlz (long)
     long __builtin_alpha_ctpop (long)

The following builtins are available on systems that use the OSF/1 PALcode. Normally they invoke the rduniq and wruniq PAL calls, but when invoked with -mtls-kernel, they invoke rdval and wrval.

     void *__builtin_thread_pointer (void)
     void __builtin_set_thread_pointer (void *)


Next: , Previous: Alpha Built-in Functions, Up: Target Builtins

5.45.2 X86 Built-in Functions

These built-in functions are available for the i386 and x86-64 family of computers, depending on the command-line switches used.

The following machine modes are available for use with MMX built-in functions (see Vector Extensions): V2SI for a vector of two 32-bit integers, V4HI for a vector of four 16-bit integers, and V8QI for a vector of eight 8-bit integers. Some of the built-in functions operate on MMX registers as a whole 64-bit entity, these use DI as their mode.

If 3Dnow extensions are enabled, V2SF is used as a mode for a vector of two 32-bit floating point values.

If SSE extensions are enabled, V4SF is used for a vector of four 32-bit floating point values. Some instructions use a vector of four 32-bit integers, these use V4SI. Finally, some instructions operate on an entire vector register, interpreting it as a 128-bit integer, these use mode TI.

The following built-in functions are made available by -mmmx. All of them generate the machine instruction that is part of the name.

     v8qi __builtin_ia32_paddb (v8qi, v8qi)
     v4hi __builtin_ia32_paddw (v4hi, v4hi)
     v2si __builtin_ia32_paddd (v2si, v2si)
     v8qi __builtin_ia32_psubb (v8qi, v8qi)
     v4hi __builtin_ia32_psubw (v4hi, v4hi)
     v2si __builtin_ia32_psubd (v2si, v2si)
     v8qi __builtin_ia32_paddsb (v8qi, v8qi)
     v4hi __builtin_ia32_paddsw (v4hi, v4hi)
     v8qi __builtin_ia32_psubsb (v8qi, v8qi)
     v4hi __builtin_ia32_psubsw (v4hi, v4hi)
     v8qi __builtin_ia32_paddusb (v8qi, v8qi)
     v4hi __builtin_ia32_paddusw (v4hi, v4hi)
     v8qi __builtin_ia32_psubusb (v8qi, v8qi)
     v4hi __builtin_ia32_psubusw (v4hi, v4hi)
     v4hi __builtin_ia32_pmullw (v4hi, v4hi)
     v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
     di __builtin_ia32_pand (di, di)
     di __builtin_ia32_pandn (di,di)
     di __builtin_ia32_por (di, di)
     di __builtin_ia32_pxor (di, di)
     v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
     v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
     v2si __builtin_ia32_pcmpeqd (v2si, v2si)
     v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
     v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
     v2si __builtin_ia32_pcmpgtd (v2si, v2si)
     v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
     v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
     v2si __builtin_ia32_punpckhdq (v2si, v2si)
     v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
     v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
     v2si __builtin_ia32_punpckldq (v2si, v2si)
     v8qi __builtin_ia32_packsswb (v4hi, v4hi)
     v4hi __builtin_ia32_packssdw (v2si, v2si)
     v8qi __builtin_ia32_packuswb (v4hi, v4hi)

The following built-in functions are made available either with -msse, or with a combination of -m3dnow and -march=athlon. All of them generate the machine instruction that is part of the name.

     v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
     v8qi __builtin_ia32_pavgb (v8qi, v8qi)
     v4hi __builtin_ia32_pavgw (v4hi, v4hi)
     v4hi __builtin_ia32_psadbw (v8qi, v8qi)
     v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
     v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
     v8qi __builtin_ia32_pminub (v8qi, v8qi)
     v4hi __builtin_ia32_pminsw (v4hi, v4hi)
     int __builtin_ia32_pextrw (v4hi, int)
     v4hi __builtin_ia32_pinsrw (v4hi, int, int)
     int __builtin_ia32_pmovmskb (v8qi)
     void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
     void __builtin_ia32_movntq (di *, di)
     void __builtin_ia32_sfence (void)

The following built-in functions are available when -msse is used. All of them generate the machine instruction that is part of the name.

     int __builtin_ia32_comieq (v4sf, v4sf)
     int __builtin_ia32_comineq (v4sf, v4sf)
     int __builtin_ia32_comilt (v4sf, v4sf)
     int __builtin_ia32_comile (v4sf, v4sf)
     int __builtin_ia32_comigt (v4sf, v4sf)
     int __builtin_ia32_comige (v4sf, v4sf)
     int __builtin_ia32_ucomieq (v4sf, v4sf)
     int __builtin_ia32_ucomineq (v4sf, v4sf)
     int __builtin_ia32_ucomilt (v4sf, v4sf)
     int __builtin_ia32_ucomile (v4sf, v4sf)
     int __builtin_ia32_ucomigt (v4sf, v4sf)
     int __builtin_ia32_ucomige (v4sf, v4sf)
     v4sf __builtin_ia32_addps (v4sf, v4sf)
     v4sf __builtin_ia32_subps (v4sf, v4sf)
     v4sf __builtin_ia32_mulps (v4sf, v4sf)
     v4sf __builtin_ia32_divps (v4sf, v4sf)
     v4sf __builtin_ia32_addss (v4sf, v4sf)
     v4sf __builtin_ia32_subss (v4sf, v4sf)
     v4sf __builtin_ia32_mulss (v4sf, v4sf)
     v4sf __builtin_ia32_divss (v4sf, v4sf)
     v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
     v4si __builtin_ia32_cmpltps (v4sf, v4sf)
     v4si __builtin_ia32_cmpleps (v4sf, v4sf)
     v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
     v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
     v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
     v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
     v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
     v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
     v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
     v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
     v4si __builtin_ia32_cmpordps (v4sf, v4sf)
     v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
     v4si __builtin_ia32_cmpltss (v4sf, v4sf)
     v4si __builtin_ia32_cmpless (v4sf, v4sf)
     v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
     v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
     v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
     v4si __builtin_ia32_cmpnless (v4sf, v4sf)
     v4si __builtin_ia32_cmpordss (v4sf, v4sf)
     v4sf __builtin_ia32_maxps (v4sf, v4sf)
     v4sf __builtin_ia32_maxss (v4sf, v4sf)
     v4sf __builtin_ia32_minps (v4sf, v4sf)
     v4sf __builtin_ia32_minss (v4sf, v4sf)
     v4sf __builtin_ia32_andps (v4sf, v4sf)
     v4sf __builtin_ia32_andnps (v4sf, v4sf)
     v4sf __builtin_ia32_orps (v4sf, v4sf)
     v4sf __builtin_ia32_xorps (v4sf, v4sf)
     v4sf __builtin_ia32_movss (v4sf, v4sf)
     v4sf __builtin_ia32_movhlps (v4sf, v4sf)
     v4sf __builtin_ia32_movlhps (v4sf, v4sf)
     v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
     v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
     v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
     v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
     v2si __builtin_ia32_cvtps2pi (v4sf)
     int __builtin_ia32_cvtss2si (v4sf)
     v2si __builtin_ia32_cvttps2pi (v4sf)
     int __builtin_ia32_cvttss2si (v4sf)
     v4sf __builtin_ia32_rcpps (v4sf)
     v4sf __builtin_ia32_rsqrtps (v4sf)
     v4sf __builtin_ia32_sqrtps (v4sf)
     v4sf __builtin_ia32_rcpss (v4sf)
     v4sf __builtin_ia32_rsqrtss (v4sf)
     v4sf __builtin_ia32_sqrtss (v4sf)
     v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
     void __builtin_ia32_movntps (float *, v4sf)
     int __builtin_ia32_movmskps (v4sf)

The following built-in functions are available when -msse is used.

v4sf __builtin_ia32_loadaps (float *)
Generates the movaps machine instruction as a load from memory.
void __builtin_ia32_storeaps (float *, v4sf)
Generates the movaps machine instruction as a store to memory.
v4sf __builtin_ia32_loadups (float *)
Generates the movups machine instruction as a load from memory.
void __builtin_ia32_storeups (float *, v4sf)
Generates the movups machine instruction as a store to memory.
v4sf __builtin_ia32_loadsss (float *)
Generates the movss machine instruction as a load from memory.
void __builtin_ia32_storess (float *, v4sf)
Generates the movss machine instruction as a store to memory.
v4sf __builtin_ia32_loadhps (v4sf, v2si *)
Generates the movhps machine instruction as a load from memory.
v4sf __builtin_ia32_loadlps (v4sf, v2si *)
Generates the movlps machine instruction as a load from memory
void __builtin_ia32_storehps (v4sf, v2si *)
Generates the movhps machine instruction as a store to memory.
void __builtin_ia32_storelps (v4sf, v2si *)
Generates the movlps machine instruction as a store to memory.

The following built-in functions are available when -msse3 is used. All of them generate the machine instruction that is part of the name.

     v2df __builtin_ia32_addsubpd (v2df, v2df)
     v2df __builtin_ia32_addsubps (v2df, v2df)
     v2df __builtin_ia32_haddpd (v2df, v2df)
     v2df __builtin_ia32_haddps (v2df, v2df)
     v2df __builtin_ia32_hsubpd (v2df, v2df)
     v2df __builtin_ia32_hsubps (v2df, v2df)
     v16qi __builtin_ia32_lddqu (char const *)
     void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
     v2df __builtin_ia32_movddup (v2df)
     v4sf __builtin_ia32_movshdup (v4sf)
     v4sf __builtin_ia32_movsldup (v4sf)
     void __builtin_ia32_mwait (unsigned int, unsigned int)

The following built-in functions are available when -msse3 is used.

v2df __builtin_ia32_loadddup (double const *)
Generates the movddup machine instruction as a load from memory.

The following built-in functions are available when -m3dnow is used. All of them generate the machine instruction that is part of the name.

     void __builtin_ia32_femms (void)
     v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
     v2si __builtin_ia32_pf2id (v2sf)
     v2sf __builtin_ia32_pfacc (v2sf, v2sf)
     v2sf __builtin_ia32_pfadd (v2sf, v2sf)
     v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
     v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
     v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
     v2sf __builtin_ia32_pfmax (v2sf, v2sf)
     v2sf __builtin_ia32_pfmin (v2sf, v2sf)
     v2sf __builtin_ia32_pfmul (v2sf, v2sf)
     v2sf __builtin_ia32_pfrcp (v2sf)
     v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
     v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
     v2sf __builtin_ia32_pfrsqrt (v2sf)
     v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
     v2sf __builtin_ia32_pfsub (v2sf, v2sf)
     v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
     v2sf __builtin_ia32_pi2fd (v2si)
     v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)

The following built-in functions are available when both -m3dnow and -march=athlon are used. All of them generate the machine instruction that is part of the name.

     v2si __builtin_ia32_pf2iw (v2sf)
     v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
     v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
     v2sf __builtin_ia32_pi2fw (v2si)
     v2sf __builtin_ia32_pswapdsf (v2sf)
     v2si __builtin_ia32_pswapdsi (v2si)


Previous: X86 Built-in Functions, Up: Target Builtins

5.45.3 PowerPC AltiVec Built-in Functions

These built-in functions are available for the PowerPC family of computers, depending on the command-line switches used.

The following machine modes are available for use with AltiVec built-in functions (see Vector Extensions): V4SI for a vector of four 32-bit integers, V4SF for a vector of four 32-bit floating point numbers, V8HI for a vector of eight 16-bit integers, and V16QI for a vector of sixteen 8-bit integers.

The following functions are made available by including <altivec.h> and using -maltivec and -mabi=altivec. The functions implement the functionality described in Motorola's AltiVec Programming Interface Manual.

There are a few differences from Motorola's documentation and GCC's implementation. Vector constants are done with curly braces (not parentheses). Vector initializers require no casts if the vector constant is of the same type as the variable it is initializing. The vector bool type is deprecated and will be discontinued in further revisions. Use vector signed instead. If signed or unsigned is omitted, the vector type will default to signed. Lastly, all overloaded functions are implemented with macros for the C implementation. So code the following example will not work:

       vec_add ((vector signed int){1, 2, 3, 4}, foo);

Since vec_add is a macro, the vector constant in the above example will be treated as four different arguments. Wrap the entire argument in parentheses for this to work. The C++ implementation does not use macros.

Note: Only the <altivec.h> interface is supported. Internally, GCC uses built-in functions to achieve the functionality in the aforementioned header file, but they are not supported and are subject to change without notice.

     vector signed char vec_abs (vector signed char, vector signed char);
     vector signed short vec_abs (vector signed short, vector signed short);
     vector signed int vec_abs (vector signed int, vector signed int);
     vector signed float vec_abs (vector signed float, vector signed float);
     
     vector signed char vec_abss (vector signed char, vector signed char);
     vector signed short vec_abss (vector signed short, vector signed short);
     
     vector signed char vec_add (vector signed char, vector signed char);
     vector unsigned char vec_add (vector signed char, vector unsigned char);
     
     vector unsigned char vec_add (vector unsigned char, vector signed char);
     
     vector unsigned char vec_add (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_add (vector signed short, vector signed short);
     vector unsigned short vec_add (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_add (vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_add (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_add (vector signed int, vector signed int);
     vector unsigned int vec_add (vector signed int, vector unsigned int);
     vector unsigned int vec_add (vector unsigned int, vector signed int);
     vector unsigned int vec_add (vector unsigned int, vector unsigned int);
     vector float vec_add (vector float, vector float);
     
     vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
     
     vector unsigned char vec_adds (vector signed char,
                                    vector unsigned char);
     vector unsigned char vec_adds (vector unsigned char,
                                    vector signed char);
     vector unsigned char vec_adds (vector unsigned char,
                                    vector unsigned char);
     vector signed char vec_adds (vector signed char, vector signed char);
     vector unsigned short vec_adds (vector signed short,
                                     vector unsigned short);
     vector unsigned short vec_adds (vector unsigned short,
                                     vector signed short);
     vector unsigned short vec_adds (vector unsigned short,
                                     vector unsigned short);
     vector signed short vec_adds (vector signed short, vector signed short);
     
     vector unsigned int vec_adds (vector signed int, vector unsigned int);
     vector unsigned int vec_adds (vector unsigned int, vector signed int);
     vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
     
     vector signed int vec_adds (vector signed int, vector signed int);
     
     vector float vec_and (vector float, vector float);
     vector float vec_and (vector float, vector signed int);
     vector float vec_and (vector signed int, vector float);
     vector signed int vec_and (vector signed int, vector signed int);
     vector unsigned int vec_and (vector signed int, vector unsigned int);
     vector unsigned int vec_and (vector unsigned int, vector signed int);
     vector unsigned int vec_and (vector unsigned int, vector unsigned int);
     vector signed short vec_and (vector signed short, vector signed short);
     vector unsigned short vec_and (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_and (vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_and (vector unsigned short,
                                    vector unsigned short);
     vector signed char vec_and (vector signed char, vector signed char);
     vector unsigned char vec_and (vector signed char, vector unsigned char);
     
     vector unsigned char vec_and (vector unsigned char, vector signed char);
     
     vector unsigned char vec_and (vector unsigned char,
                                   vector unsigned char);
     
     vector float vec_andc (vector float, vector float);
     vector float vec_andc (vector float, vector signed int);
     vector float vec_andc (vector signed int, vector float);
     vector signed int vec_andc (vector signed int, vector signed int);
     vector unsigned int vec_andc (vector signed int, vector unsigned int);
     vector unsigned int vec_andc (vector unsigned int, vector signed int);
     vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
     
     vector signed short vec_andc (vector signed short, vector signed short);
     
     vector unsigned short vec_andc (vector signed short,
                                     vector unsigned short);
     vector unsigned short vec_andc (vector unsigned short,
                                     vector signed short);
     vector unsigned short vec_andc (vector unsigned short,
                                     vector unsigned short);
     vector signed char vec_andc (vector signed char, vector signed char);
     vector unsigned char vec_andc (vector signed char,
                                    vector unsigned char);
     vector unsigned char vec_andc (vector unsigned char,
                                    vector signed char);
     vector unsigned char vec_andc (vector unsigned char,
                                    vector unsigned char);
     
     vector unsigned char vec_avg (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_avg (vector signed char, vector signed char);
     vector unsigned short vec_avg (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_avg (vector signed short, vector signed short);
     vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
     vector signed int vec_avg (vector signed int, vector signed int);
     
     vector float vec_ceil (vector float);
     
     vector signed int vec_cmpb (vector float, vector float);
     
     vector signed char vec_cmpeq (vector signed char, vector signed char);
     vector signed char vec_cmpeq (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_cmpeq (vector signed short,
                                    vector signed short);
     vector signed short vec_cmpeq (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_cmpeq (vector signed int, vector signed int);
     vector signed int vec_cmpeq (vector unsigned int, vector unsigned int);
     vector signed int vec_cmpeq (vector float, vector float);
     
     vector signed int vec_cmpge (vector float, vector float);
     
     vector signed char vec_cmpgt (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_cmpgt (vector signed char, vector signed char);
     vector signed short vec_cmpgt (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_cmpgt (vector signed short,
                                    vector signed short);
     vector signed int vec_cmpgt (vector unsigned int, vector unsigned int);
     vector signed int vec_cmpgt (vector signed int, vector signed int);
     vector signed int vec_cmpgt (vector float, vector float);
     
     vector signed int vec_cmple (vector float, vector float);
     
     vector signed char vec_cmplt (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_cmplt (vector signed char, vector signed char);
     vector signed short vec_cmplt (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_cmplt (vector signed short,
                                    vector signed short);
     vector signed int vec_cmplt (vector unsigned int, vector unsigned int);
     vector signed int vec_cmplt (vector signed int, vector signed int);
     vector signed int vec_cmplt (vector float, vector float);
     
     vector float vec_ctf (vector unsigned int, const char);
     vector float vec_ctf (vector signed int, const char);
     
     vector signed int vec_cts (vector float, const char);
     
     vector unsigned int vec_ctu (vector float, const char);
     
     void vec_dss (const char);
     
     void vec_dssall (void);
     
     void vec_dst (void *, int, const char);
     
     void vec_dstst (void *, int, const char);
     
     void vec_dststt (void *, int, const char);
     
     void vec_dstt (void *, int, const char);
     
     vector float vec_expte (vector float, vector float);
     
     vector float vec_floor (vector float, vector float);
     
     vector float vec_ld (int, vector float *);
     vector float vec_ld (int, float *):
     vector signed int vec_ld (int, int *);
     vector signed int vec_ld (int, vector signed int *);
     vector unsigned int vec_ld (int, vector unsigned int *);
     vector unsigned int vec_ld (int, unsigned int *);
     vector signed short vec_ld (int, short *, vector signed short *);
     vector unsigned short vec_ld (int, unsigned short *,
                                   vector unsigned short *);
     vector signed char vec_ld (int, signed char *);
     vector signed char vec_ld (int, vector signed char *);
     vector unsigned char vec_ld (int, unsigned char *);
     vector unsigned char vec_ld (int, vector unsigned char *);
     
     vector signed char vec_lde (int, signed char *);
     vector unsigned char vec_lde (int, unsigned char *);
     vector signed short vec_lde (int, short *);
     vector unsigned short vec_lde (int, unsigned short *);
     vector float vec_lde (int, float *);
     vector signed int vec_lde (int, int *);
     vector unsigned int vec_lde (int, unsigned int *);
     
     void float vec_ldl (int, float *);
     void float vec_ldl (int, vector float *);
     void signed int vec_ldl (int, vector signed int *);
     void signed int vec_ldl (int, int *);
     void unsigned int vec_ldl (int, unsigned int *);
     void unsigned int vec_ldl (int, vector unsigned int *);
     void signed short vec_ldl (int, vector signed short *);
     void signed short vec_ldl (int, short *);
     void unsigned short vec_ldl (int, vector unsigned short *);
     void unsigned short vec_ldl (int, unsigned short *);
     void signed char vec_ldl (int, vector signed char *);
     void signed char vec_ldl (int, signed char *);
     void unsigned char vec_ldl (int, vector unsigned char *);
     void unsigned char vec_ldl (int, unsigned char *);
     
     vector float vec_loge (vector float);
     
     vector unsigned char vec_lvsl (int, void *, int *);
     
     vector unsigned char vec_lvsr (int, void *, int *);
     
     vector float vec_madd (vector float, vector float, vector float);
     
     vector signed short vec_madds (vector signed short, vector signed short,
                                    vector signed short);
     
     vector unsigned char vec_max (vector signed char, vector unsigned char);
     
     vector unsigned char vec_max (vector unsigned char, vector signed char);
     
     vector unsigned char vec_max (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_max (vector signed char, vector signed char);
     vector unsigned short vec_max (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_max (vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_max (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_max (vector signed short, vector signed short);
     vector unsigned int vec_max (vector signed int, vector unsigned int);
     vector unsigned int vec_max (vector unsigned int, vector signed int);
     vector unsigned int vec_max (vector unsigned int, vector unsigned int);
     vector signed int vec_max (vector signed int, vector signed int);
     vector float vec_max (vector float, vector float);
     
     vector signed char vec_mergeh (vector signed char, vector signed char);
     vector unsigned char vec_mergeh (vector unsigned char,
                                      vector unsigned char);
     vector signed short vec_mergeh (vector signed short,
                                     vector signed short);
     vector unsigned short vec_mergeh (vector unsigned short,
                                       vector unsigned short);
     vector float vec_mergeh (vector float, vector float);
     vector signed int vec_mergeh (vector signed int, vector signed int);
     vector unsigned int vec_mergeh (vector unsigned int,
                                     vector unsigned int);
     
     vector signed char vec_mergel (vector signed char, vector signed char);
     vector unsigned char vec_mergel (vector unsigned char,
                                      vector unsigned char);
     vector signed short vec_mergel (vector signed short,
                                     vector signed short);
     vector unsigned short vec_mergel (vector unsigned short,
                                       vector unsigned short);
     vector float vec_mergel (vector float, vector float);
     vector signed int vec_mergel (vector signed int, vector signed int);
     vector unsigned int vec_mergel (vector unsigned int,
                                     vector unsigned int);
     
     vector unsigned short vec_mfvscr (void);
     
     vector unsigned char vec_min (vector signed char, vector unsigned char);
     
     vector unsigned char vec_min (vector unsigned char, vector signed char);
     
     vector unsigned char vec_min (vector unsigned char,
                                   vector unsigned char);
     vector signed char vec_min (vector signed char, vector signed char);
     vector unsigned short vec_min (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_min (vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_min (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_min (vector signed short, vector signed short);
     vector unsigned int vec_min (vector signed int, vector unsigned int);
     vector unsigned int vec_min (vector unsigned int, vector signed int);
     vector unsigned int vec_min (vector unsigned int, vector unsigned int);
     vector signed int vec_min (vector signed int, vector signed int);
     vector float vec_min (vector float, vector float);
     
     vector signed short vec_mladd (vector signed short, vector signed short,
                                    vector signed short);
     vector signed short vec_mladd (vector signed short,
                                    vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_mladd (vector unsigned short,
                                    vector signed short,
                                    vector signed short);
     vector unsigned short vec_mladd (vector unsigned short,
                                      vector unsigned short,
                                      vector unsigned short);
     
     vector signed short vec_mradds (vector signed short,
                                     vector signed short,
                                     vector signed short);
     
     vector unsigned int vec_msum (vector unsigned char,
                                   vector unsigned char,
                                   vector unsigned int);
     vector signed int vec_msum (vector signed char, vector unsigned char,
                                 vector signed int);
     vector unsigned int vec_msum (vector unsigned short,
                                   vector unsigned short,
                                   vector unsigned int);
     vector signed int vec_msum (vector signed short, vector signed short,
                                 vector signed int);
     
     vector unsigned int vec_msums (vector unsigned short,
                                    vector unsigned short,
                                    vector unsigned int);
     vector signed int vec_msums (vector signed short, vector signed short,
                                  vector signed int);
     
     void vec_mtvscr (vector signed int);
     void vec_mtvscr (vector unsigned int);
     void vec_mtvscr (vector signed short);
     void vec_mtvscr (vector unsigned short);
     void vec_mtvscr (vector signed char);
     void vec_mtvscr (vector unsigned char);
     
     vector unsigned short vec_mule (vector unsigned char,
                                     vector unsigned char);
     vector signed short vec_mule (vector signed char, vector signed char);
     vector unsigned int vec_mule (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_mule (vector signed short, vector signed short);
     
     vector unsigned short vec_mulo (vector unsigned char,
                                     vector unsigned char);
     vector signed short vec_mulo (vector signed char, vector signed char);
     vector unsigned int vec_mulo (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_mulo (vector signed short, vector signed short);
     
     vector float vec_nmsub (vector float, vector float, vector float);
     
     vector float vec_nor (vector float, vector float);
     vector signed int vec_nor (vector signed int, vector signed int);
     vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
     vector signed short vec_nor (vector signed short, vector signed short);
     vector unsigned short vec_nor (vector unsigned short,
                                    vector unsigned short);
     vector signed char vec_nor (vector signed char, vector signed char);
     vector unsigned char vec_nor (vector unsigned char,
                                   vector unsigned char);
     
     vector float vec_or (vector float, vector float);
     vector float vec_or (vector float, vector signed int);
     vector float vec_or (vector signed int, vector float);
     vector signed int vec_or (vector signed int, vector signed int);
     vector unsigned int vec_or (vector signed int, vector unsigned int);
     vector unsigned int vec_or (vector unsigned int, vector signed int);
     vector unsigned int vec_or (vector unsigned int, vector unsigned int);
     vector signed short vec_or (vector signed short, vector signed short);
     vector unsigned short vec_or (vector signed short,
                                   vector unsigned short);
     vector unsigned short vec_or (vector unsigned short,
                                   vector signed short);
     vector unsigned short vec_or (vector unsigned short,
                                   vector unsigned short);
     vector signed char vec_or (vector signed char, vector signed char);
     vector unsigned char vec_or (vector signed char, vector unsigned char);
     vector unsigned char vec_or (vector unsigned char, vector signed char);
     vector unsigned char vec_or (vector unsigned char,
                                  vector unsigned char);
     
     vector signed char vec_pack (vector signed short, vector signed short);
     vector unsigned char vec_pack (vector unsigned short,
                                    vector unsigned short);
     vector signed short vec_pack (vector signed int, vector signed int);
     vector unsigned short vec_pack (vector unsigned int,
                                     vector unsigned int);
     
     vector signed short vec_packpx (vector unsigned int,
                                     vector unsigned int);
     
     vector unsigned char vec_packs (vector unsigned short,
                                     vector unsigned short);
     vector signed char vec_packs (vector signed short, vector signed short);
     
     vector unsigned short vec_packs (vector unsigned int,
                                      vector unsigned int);
     vector signed short vec_packs (vector signed int, vector signed int);
     
     vector unsigned char vec_packsu (vector unsigned short,
                                      vector unsigned short);
     vector unsigned char vec_packsu (vector signed short,
                                      vector signed short);
     vector unsigned short vec_packsu (vector unsigned int,
                                       vector unsigned int);
     vector unsigned short vec_packsu (vector signed int, vector signed int);
     
     vector float vec_perm (vector float, vector float,
                            vector unsigned char);
     vector signed int vec_perm (vector signed int, vector signed int,
                                 vector unsigned char);
     vector unsigned int vec_perm (vector unsigned int, vector unsigned int,
                                   vector unsigned char);
     vector signed short vec_perm (vector signed short, vector signed short,
                                   vector unsigned char);
     vector unsigned short vec_perm (vector unsigned short,
                                     vector unsigned short,
                                     vector unsigned char);
     vector signed char vec_perm (vector signed char, vector signed char,
                                  vector unsigned char);
     vector unsigned char vec_perm (vector unsigned char,
                                    vector unsigned char,
                                    vector unsigned char);
     
     vector float vec_re (vector float);
     
     vector signed char vec_rl (vector signed char, vector unsigned char);
     vector unsigned char vec_rl (vector unsigned char,
                                  vector unsigned char);
     vector signed short vec_rl (vector signed short, vector unsigned short);
     
     vector unsigned short vec_rl (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_rl (vector signed int, vector unsigned int);
     vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
     
     vector float vec_round (vector float);
     
     vector float vec_rsqrte (vector float);
     
     vector float vec_sel (vector float, vector float, vector signed int);
     vector float vec_sel (vector float, vector float, vector unsigned int);
     vector signed int vec_sel (vector signed int, vector signed int,
                                vector signed int);
     vector signed int vec_sel (vector signed int, vector signed int,
                                vector unsigned int);
     vector unsigned int vec_sel (vector unsigned int, vector unsigned int,
                                  vector signed int);
     vector unsigned int vec_sel (vector unsigned int, vector unsigned int,
                                  vector unsigned int);
     vector signed short vec_sel (vector signed short, vector signed short,
                                  vector signed short);
     vector signed short vec_sel (vector signed short, vector signed short,
                                  vector unsigned short);
     vector unsigned short vec_sel (vector unsigned short,
                                    vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_sel (vector unsigned short,
                                    vector unsigned short,
                                    vector unsigned short);
     vector signed char vec_sel (vector signed char, vector signed char,
                                 vector signed char);
     vector signed char vec_sel (vector signed char, vector signed char,
                                 vector unsigned char);
     vector unsigned char vec_sel (vector unsigned char,
                                   vector unsigned char,
                                   vector signed char);
     vector unsigned char vec_sel (vector unsigned char,
                                   vector unsigned char,
                                   vector unsigned char);
     
     vector signed char vec_sl (vector signed char, vector unsigned char);
     vector unsigned char vec_sl (vector unsigned char,
                                  vector unsigned char);
     vector signed short vec_sl (vector signed short, vector unsigned short);
     
     vector unsigned short vec_sl (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_sl (vector signed int, vector unsigned int);
     vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
     
     vector float vec_sld (vector float, vector float, const char);
     vector signed int vec_sld (vector signed int, vector signed int,
                                const char);
     vector unsigned int vec_sld (vector unsigned int, vector unsigned int,
                                  const char);
     vector signed short vec_sld (vector signed short, vector signed short,
                                  const char);
     vector unsigned short vec_sld (vector unsigned short,
                                    vector unsigned short, const char);
     vector signed char vec_sld (vector signed char, vector signed char,
                                 const char);
     vector unsigned char vec_sld (vector unsigned char,
                                   vector unsigned char,
                                   const char);
     
     vector signed int vec_sll (vector signed int, vector unsigned int);
     vector signed int vec_sll (vector signed int, vector unsigned short);
     vector signed int vec_sll (vector signed int, vector unsigned char);
     vector unsigned int vec_sll (vector unsigned int, vector unsigned int);
     vector unsigned int vec_sll (vector unsigned int,
                                  vector unsigned short);
     vector unsigned int vec_sll (vector unsigned int, vector unsigned char);
     
     vector signed short vec_sll (vector signed short, vector unsigned int);
     vector signed short vec_sll (vector signed short,
                                  vector unsigned short);
     vector signed short vec_sll (vector signed short, vector unsigned char);
     
     vector unsigned short vec_sll (vector unsigned short,
                                    vector unsigned int);
     vector unsigned short vec_sll (vector unsigned short,
                                    vector unsigned short);
     vector unsigned short vec_sll (vector unsigned short,
                                    vector unsigned char);
     vector signed char vec_sll (vector signed char, vector unsigned int);
     vector signed char vec_sll (vector signed char, vector unsigned short);
     vector signed char vec_sll (vector signed char, vector unsigned char);
     vector unsigned char vec_sll (vector unsigned char,
                                   vector unsigned int);
     vector unsigned char vec_sll (vector unsigned char,
                                   vector unsigned short);
     vector unsigned char vec_sll (vector unsigned char,
                                   vector unsigned char);
     
     vector float vec_slo (vector float, vector signed char);
     vector float vec_slo (vector float, vector unsigned char);
     vector signed int vec_slo (vector signed int, vector signed char);
     vector signed int vec_slo (vector signed int, vector unsigned char);
     vector unsigned int vec_slo (vector unsigned int, vector signed char);
     vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
     
     vector signed short vec_slo (vector signed short, vector signed char);
     vector signed short vec_slo (vector signed short, vector unsigned char);
     
     vector unsigned short vec_slo (vector unsigned short,
                                    vector signed char);
     vector unsigned short vec_slo (vector unsigned short,
                                    vector unsigned char);
     vector signed char vec_slo (vector signed char, vector signed char);
     vector signed char vec_slo (vector signed char, vector unsigned char);
     vector unsigned char vec_slo (vector unsigned char, vector signed char);
     
     vector unsigned char vec_slo (vector unsigned char,
                                   vector unsigned char);
     
     vector signed char vec_splat (vector signed char, const char);
     vector unsigned char vec_splat (vector unsigned char, const char);
     vector signed short vec_splat (vector signed short, const char);
     vector unsigned short vec_splat (vector unsigned short, const char);
     vector float vec_splat (vector float, const char);
     vector signed int vec_splat (vector signed int, const char);
     vector unsigned int vec_splat (vector unsigned int, const char);
     
     vector signed char vec_splat_s8 (const char);
     
     vector signed short vec_splat_s16 (const char);
     
     vector signed int vec_splat_s32 (const char);
     
     vector unsigned char vec_splat_u8 (const char);
     
     vector unsigned short vec_splat_u16 (const char);
     
     vector unsigned int vec_splat_u32 (const char);
     
     vector signed char vec_sr (vector signed char, vector unsigned char);
     vector unsigned char vec_sr (vector unsigned char,
                                  vector unsigned char);
     vector signed short vec_sr (vector signed short, vector unsigned short);
     
     vector unsigned short vec_sr (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_sr (vector signed int, vector unsigned int);
     vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
     
     vector signed char vec_sra (vector signed char, vector unsigned char);
     vector unsigned char vec_sra (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_sra (vector signed short,
                                  vector unsigned short);
     vector unsigned short vec_sra (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_sra (vector signed int, vector unsigned int);
     vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
     
     vector signed int vec_srl (vector signed int, vector unsigned int);
     vector signed int vec_srl (vector signed int, vector unsigned short);
     vector signed int vec_srl (vector signed int, vector unsigned char);
     vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
     vector unsigned int vec_srl (vector unsigned int,
                                  vector unsigned short);
     vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
     
     vector signed short vec_srl (vector signed short, vector unsigned int);
     vector signed short vec_srl (vector signed short,
                                  vector unsigned short);
     vector signed short vec_srl (vector signed short, vector unsigned char);
     
     vector unsigned short vec_srl (vector unsigned short,
                                    vector unsigned int);
     vector unsigned short vec_srl (vector unsigned short,
                                    vector unsigned short);
     vector unsigned short vec_srl (vector unsigned short,
                                    vector unsigned char);
     vector signed char vec_srl (vector signed char, vector unsigned int);
     vector signed char vec_srl (vector signed char, vector unsigned short);
     vector signed char vec_srl (vector signed char, vector unsigned char);
     vector unsigned char vec_srl (vector unsigned char,
                                   vector unsigned int);
     vector unsigned char vec_srl (vector unsigned char,
                                   vector unsigned short);
     vector unsigned char vec_srl (vector unsigned char,
                                   vector unsigned char);
     
     vector float vec_sro (vector float, vector signed char);
     vector float vec_sro (vector float, vector unsigned char);
     vector signed int vec_sro (vector signed int, vector signed char);
     vector signed int vec_sro (vector signed int, vector unsigned char);
     vector unsigned int vec_sro (vector unsigned int, vector signed char);
     vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
     
     vector signed short vec_sro (vector signed short, vector signed char);
     vector signed short vec_sro (vector signed short, vector unsigned char);
     
     vector unsigned short vec_sro (vector unsigned short,
                                    vector signed char);
     vector unsigned short vec_sro (vector unsigned short,
                                    vector unsigned char);
     vector signed char vec_sro (vector signed char, vector signed char);
     vector signed char vec_sro (vector signed char, vector unsigned char);
     vector unsigned char vec_sro (vector unsigned char, vector signed char);
     
     vector unsigned char vec_sro (vector unsigned char,
                                   vector unsigned char);
     
     void vec_st (vector float, int, float *);
     void vec_st (vector float, int, vector float *);
     void vec_st (vector signed int, int, int *);
     void vec_st (vector signed int, int, unsigned int *);
     void vec_st (vector unsigned int, int, unsigned int *);
     void vec_st (vector unsigned int, int, vector unsigned int *);
     void vec_st (vector signed short, int, short *);
     void vec_st (vector signed short, int, vector unsigned short *);
     void vec_st (vector signed short, int, vector signed short *);
     void vec_st (vector unsigned short, int, unsigned short *);
     void vec_st (vector unsigned short, int, vector unsigned short *);
     void vec_st (vector signed char, int, signed char *);
     void vec_st (vector signed char, int, unsigned char *);
     void vec_st (vector signed char, int, vector signed char *);
     void vec_st (vector unsigned char, int, unsigned char *);
     void vec_st (vector unsigned char, int, vector unsigned char *);
     
     void vec_ste (vector signed char, int, unsigned char *);
     void vec_ste (vector signed char, int, signed char *);
     void vec_ste (vector unsigned char, int, unsigned char *);
     void vec_ste (vector signed short, int, short *);
     void vec_ste (vector signed short, int, unsigned short *);
     void vec_ste (vector unsigned short, int, void *);
     void vec_ste (vector signed int, int, unsigned int *);
     void vec_ste (vector signed int, int, int *);
     void vec_ste (vector unsigned int, int, unsigned int *);
     void vec_ste (vector float, int, float *);
     
     void vec_stl (vector float, int, vector float *);
     void vec_stl (vector float, int, float *);
     void vec_stl (vector signed int, int, vector signed int *);
     void vec_stl (vector signed int, int, int *);
     void vec_stl (vector signed int, int, unsigned int *);
     void vec_stl (vector unsigned int, int, vector unsigned int *);
     void vec_stl (vector unsigned int, int, unsigned int *);
     void vec_stl (vector signed short, int, short *);
     void vec_stl (vector signed short, int, unsigned short *);
     void vec_stl (vector signed short, int, vector signed short *);
     void vec_stl (vector unsigned short, int, unsigned short *);
     void vec_stl (vector unsigned short, int, vector signed short *);
     void vec_stl (vector signed char, int, signed char *);
     void vec_stl (vector signed char, int, unsigned char *);
     void vec_stl (vector signed char, int, vector signed char *);
     void vec_stl (vector unsigned char, int, unsigned char *);
     void vec_stl (vector unsigned char, int, vector unsigned char *);
     
     vector signed char vec_sub (vector signed char, vector signed char);
     vector unsigned char vec_sub (vector signed char, vector unsigned char);
     
     vector unsigned char vec_sub (vector unsigned char, vector signed char);
     
     vector unsigned char vec_sub (vector unsigned char,
                                   vector unsigned char);
     vector signed short vec_sub (vector signed short, vector signed short);
     vector unsigned short vec_sub (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_sub (vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_sub (vector unsigned short,
                                    vector unsigned short);
     vector signed int vec_sub (vector signed int, vector signed int);
     vector unsigned int vec_sub (vector signed int, vector unsigned int);
     vector unsigned int vec_sub (vector unsigned int, vector signed int);
     vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
     vector float vec_sub (vector float, vector float);
     
     vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
     
     vector unsigned char vec_subs (vector signed char,
                                    vector unsigned char);
     vector unsigned char vec_subs (vector unsigned char,
                                    vector signed char);
     vector unsigned char vec_subs (vector unsigned char,
                                    vector unsigned char);
     vector signed char vec_subs (vector signed char, vector signed char);
     vector unsigned short vec_subs (vector signed short,
                                     vector unsigned short);
     vector unsigned short vec_subs (vector unsigned short,
                                     vector signed short);
     vector unsigned short vec_subs (vector unsigned short,
                                     vector unsigned short);
     vector signed short vec_subs (vector signed short, vector signed short);
     
     vector unsigned int vec_subs (vector signed int, vector unsigned int);
     vector unsigned int vec_subs (vector unsigned int, vector signed int);
     vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
     
     vector signed int vec_subs (vector signed int, vector signed int);
     
     vector unsigned int vec_sum4s (vector unsigned char,
                                    vector unsigned int);
     vector signed int vec_sum4s (vector signed char, vector signed int);
     vector signed int vec_sum4s (vector signed short, vector signed int);
     
     vector signed int vec_sum2s (vector signed int, vector signed int);
     
     vector signed int vec_sums (vector signed int, vector signed int);
     
     vector float vec_trunc (vector float);
     
     vector signed short vec_unpackh (vector signed char);
     vector unsigned int vec_unpackh (vector signed short);
     vector signed int vec_unpackh (vector signed short);
     
     vector signed short vec_unpackl (vector signed char);
     vector unsigned int vec_unpackl (vector signed short);
     vector signed int vec_unpackl (vector signed short);
     
     vector float vec_xor (vector float, vector float);
     vector float vec_xor (vector float, vector signed int);
     vector float vec_xor (vector signed int, vector float);
     vector signed int vec_xor (vector signed int, vector signed int);
     vector unsigned int vec_xor (vector signed int, vector unsigned int);
     vector unsigned int vec_xor (vector unsigned int, vector signed int);
     vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
     vector signed short vec_xor (vector signed short, vector signed short);
     vector unsigned short vec_xor (vector signed short,
                                    vector unsigned short);
     vector unsigned short vec_xor (vector unsigned short,
                                    vector signed short);
     vector unsigned short vec_xor (vector unsigned short,
                                    vector unsigned short);
     vector signed char vec_xor (vector signed char, vector signed char);
     vector unsigned char vec_xor (vector signed char, vector unsigned char);
     
     vector unsigned char vec_xor (vector unsigned char, vector signed char);
     
     vector unsigned char vec_xor (vector unsigned char,
                                   vector unsigned char);
     
     vector signed int vec_all_eq (vector signed char, vector unsigned char);
     
     vector signed int vec_all_eq (vector signed char, vector signed char);
     vector signed int vec_all_eq (vector unsigned char, vector signed char);
     
     vector signed int vec_all_eq (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_all_eq (vector signed short,
                                   vector unsigned short);
     vector signed int vec_all_eq (vector signed short, vector signed short);
     
     vector signed int vec_all_eq (vector unsigned short,
                                   vector signed short);
     vector signed int vec_all_eq (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_all_eq (vector signed int, vector unsigned int);
     vector signed int vec_all_eq (vector signed int, vector signed int);
     vector signed int vec_all_eq (vector unsigned int, vector signed int);
     vector signed int vec_all_eq (vector unsigned int, vector unsigned int);
     
     vector signed int vec_all_eq (vector float, vector float);
     
     vector signed int vec_all_ge (vector signed char, vector unsigned char);
     
     vector signed int vec_all_ge (vector unsigned char, vector signed char);
     
     vector signed int vec_all_ge (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_all_ge (vector signed char, vector signed char);
     vector signed int vec_all_ge (vector signed short,
                                   vector unsigned short);
     vector signed int vec_all_ge (vector unsigned short,
                                   vector signed short);
     vector signed int vec_all_ge (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_all_ge (vector signed short, vector signed short);
     
     vector signed int vec_all_ge (vector signed int, vector unsigned int);
     vector signed int vec_all_ge (vector unsigned int, vector signed int);
     vector signed int vec_all_ge (vector unsigned int, vector unsigned int);
     
     vector signed int vec_all_ge (vector signed int, vector signed int);
     vector signed int vec_all_ge (vector float, vector float);
     
     vector signed int vec_all_gt (vector signed char, vector unsigned char);
     
     vector signed int vec_all_gt (vector unsigned char, vector signed char);
     
     vector signed int vec_all_gt (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_all_gt (vector signed char, vector signed char);
     vector signed int vec_all_gt (vector signed short,
                                   vector unsigned short);
     vector signed int vec_all_gt (vector unsigned short,
                                   vector signed short);
     vector signed int vec_all_gt (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_all_gt (vector signed short, vector signed short);
     
     vector signed int vec_all_gt (vector signed int, vector unsigned int);
     vector signed int vec_all_gt (vector unsigned int, vector signed int);
     vector signed int vec_all_gt (vector unsigned int, vector unsigned int);
     
     vector signed int vec_all_gt (vector signed int, vector signed int);
     vector signed int vec_all_gt (vector float, vector float);
     
     vector signed int vec_all_in (vector float, vector float);
     
     vector signed int vec_all_le (vector signed char, vector unsigned char);
     
     vector signed int vec_all_le (vector unsigned char, vector signed char);
     
     vector signed int vec_all_le (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_all_le (vector signed char, vector signed char);
     vector signed int vec_all_le (vector signed short,
                                   vector unsigned short);
     vector signed int vec_all_le (vector unsigned short,
                                   vector signed short);
     vector signed int vec_all_le (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_all_le (vector signed short, vector signed short);
     
     vector signed int vec_all_le (vector signed int, vector unsigned int);
     vector signed int vec_all_le (vector unsigned int, vector signed int);
     vector signed int vec_all_le (vector unsigned int, vector unsigned int);
     
     vector signed int vec_all_le (vector signed int, vector signed int);
     vector signed int vec_all_le (vector float, vector float);
     
     vector signed int vec_all_lt (vector signed char, vector unsigned char);
     
     vector signed int vec_all_lt (vector unsigned char, vector signed char);
     
     vector signed int vec_all_lt (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_all_lt (vector signed char, vector signed char);
     vector signed int vec_all_lt (vector signed short,
                                   vector unsigned short);
     vector signed int vec_all_lt (vector unsigned short,
                                   vector signed short);
     vector signed int vec_all_lt (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_all_lt (vector signed short, vector signed short);
     
     vector signed int vec_all_lt (vector signed int, vector unsigned int);
     vector signed int vec_all_lt (vector unsigned int, vector signed int);
     vector signed int vec_all_lt (vector unsigned int, vector unsigned int);
     
     vector signed int vec_all_lt (vector signed int, vector signed int);
     vector signed int vec_all_lt (vector float, vector float);
     
     vector signed int vec_all_nan (vector float);
     
     vector signed int vec_all_ne (vector signed char, vector unsigned char);
     
     vector signed int vec_all_ne (vector signed char, vector signed char);
     vector signed int vec_all_ne (vector unsigned char, vector signed char);
     
     vector signed int vec_all_ne (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_all_ne (vector signed short,
                                   vector unsigned short);
     vector signed int vec_all_ne (vector signed short, vector signed short);
     
     vector signed int vec_all_ne (vector unsigned short,
                                   vector signed short);
     vector signed int vec_all_ne (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_all_ne (vector signed int, vector unsigned int);
     vector signed int vec_all_ne (vector signed int, vector signed int);
     vector signed int vec_all_ne (vector unsigned int, vector signed int);
     vector signed int vec_all_ne (vector unsigned int, vector unsigned int);
     
     vector signed int vec_all_ne (vector float, vector float);
     
     vector signed int vec_all_nge (vector float, vector float);
     
     vector signed int vec_all_ngt (vector float, vector float);
     
     vector signed int vec_all_nle (vector float, vector float);
     
     vector signed int vec_all_nlt (vector float, vector float);
     
     vector signed int vec_all_numeric (vector float);
     
     vector signed int vec_any_eq (vector signed char, vector unsigned char);
     
     vector signed int vec_any_eq (vector signed char, vector signed char);
     vector signed int vec_any_eq (vector unsigned char, vector signed char);
     
     vector signed int vec_any_eq (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_any_eq (vector signed short,
                                   vector unsigned short);
     vector signed int vec_any_eq (vector signed short, vector signed short);
     
     vector signed int vec_any_eq (vector unsigned short,
                                   vector signed short);
     vector signed int vec_any_eq (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_any_eq (vector signed int, vector unsigned int);
     vector signed int vec_any_eq (vector signed int, vector signed int);
     vector signed int vec_any_eq (vector unsigned int, vector signed int);
     vector signed int vec_any_eq (vector unsigned int, vector unsigned int);
     
     vector signed int vec_any_eq (vector float, vector float);
     
     vector signed int vec_any_ge (vector signed char, vector unsigned char);
     
     vector signed int vec_any_ge (vector unsigned char, vector signed char);
     
     vector signed int vec_any_ge (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_any_ge (vector signed char, vector signed char);
     vector signed int vec_any_ge (vector signed short,
                                   vector unsigned short);
     vector signed int vec_any_ge (vector unsigned short,
                                   vector signed short);
     vector signed int vec_any_ge (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_any_ge (vector signed short, vector signed short);
     
     vector signed int vec_any_ge (vector signed int, vector unsigned int);
     vector signed int vec_any_ge (vector unsigned int, vector signed int);
     vector signed int vec_any_ge (vector unsigned int, vector unsigned int);
     
     vector signed int vec_any_ge (vector signed int, vector signed int);
     vector signed int vec_any_ge (vector float, vector float);
     
     vector signed int vec_any_gt (vector signed char, vector unsigned char);
     
     vector signed int vec_any_gt (vector unsigned char, vector signed char);
     
     vector signed int vec_any_gt (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_any_gt (vector signed char, vector signed char);
     vector signed int vec_any_gt (vector signed short,
                                   vector unsigned short);
     vector signed int vec_any_gt (vector unsigned short,
                                   vector signed short);
     vector signed int vec_any_gt (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_any_gt (vector signed short, vector signed short);
     
     vector signed int vec_any_gt (vector signed int, vector unsigned int);
     vector signed int vec_any_gt (vector unsigned int, vector signed int);
     vector signed int vec_any_gt (vector unsigned int, vector unsigned int);
     
     vector signed int vec_any_gt (vector signed int, vector signed int);
     vector signed int vec_any_gt (vector float, vector float);
     
     vector signed int vec_any_le (vector signed char, vector unsigned char);
     
     vector signed int vec_any_le (vector unsigned char, vector signed char);
     
     vector signed int vec_any_le (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_any_le (vector signed char, vector signed char);
     vector signed int vec_any_le (vector signed short,
                                   vector unsigned short);
     vector signed int vec_any_le (vector unsigned short,
                                   vector signed short);
     vector signed int vec_any_le (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_any_le (vector signed short, vector signed short);
     
     vector signed int vec_any_le (vector signed int, vector unsigned int);
     vector signed int vec_any_le (vector unsigned int, vector signed int);
     vector signed int vec_any_le (vector unsigned int, vector unsigned int);
     
     vector signed int vec_any_le (vector signed int, vector signed int);
     vector signed int vec_any_le (vector float, vector float);
     
     vector signed int vec_any_lt (vector signed char, vector unsigned char);
     
     vector signed int vec_any_lt (vector unsigned char, vector signed char);
     
     vector signed int vec_any_lt (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_any_lt (vector signed char, vector signed char);
     vector signed int vec_any_lt (vector signed short,
                                   vector unsigned short);
     vector signed int vec_any_lt (vector unsigned short,
                                   vector signed short);
     vector signed int vec_any_lt (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_any_lt (vector signed short, vector signed short);
     
     vector signed int vec_any_lt (vector signed int, vector unsigned int);
     vector signed int vec_any_lt (vector unsigned int, vector signed int);
     vector signed int vec_any_lt (vector unsigned int, vector unsigned int);
     
     vector signed int vec_any_lt (vector signed int, vector signed int);
     vector signed int vec_any_lt (vector float, vector float);
     
     vector signed int vec_any_nan (vector float);
     
     vector signed int vec_any_ne (vector signed char, vector unsigned char);
     
     vector signed int vec_any_ne (vector signed char, vector signed char);
     vector signed int vec_any_ne (vector unsigned char, vector signed char);
     
     vector signed int vec_any_ne (vector unsigned char,
                                   vector unsigned char);
     vector signed int vec_any_ne (vector signed short,
                                   vector unsigned short);
     vector signed int vec_any_ne (vector signed short, vector signed short);
     
     vector signed int vec_any_ne (vector unsigned short,
                                   vector signed short);
     vector signed int vec_any_ne (vector unsigned short,
                                   vector unsigned short);
     vector signed int vec_any_ne (vector signed int, vector unsigned int);
     vector signed int vec_any_ne (vector signed int, vector signed int);
     vector signed int vec_any_ne (vector unsigned int, vector signed int);
     vector signed int vec_any_ne (vector unsigned int, vector unsigned int);
     
     vector signed int vec_any_ne (vector float, vector float);
     
     vector signed int vec_any_nge (vector float, vector float);
     
     vector signed int vec_any_ngt (vector float, vector float);
     
     vector signed int vec_any_nle (vector float, vector float);
     
     vector signed int vec_any_nlt (vector float, vector float);
     
     vector signed int vec_any_numeric (vector float);
     
     vector signed int vec_any_out (vector float, vector float);


Next: , Previous: Target Builtins, Up: C Extensions

5.46 Pragmas Accepted by GCC

GCC supports several types of pragmas, primarily in order to compile code originally written for other compilers. Note that in general we do not recommend the use of pragmas; See Function Attributes, for further explanation.


Next: , Up: Pragmas

5.46.1 ARM Pragmas

The ARM target defines pragmas for controlling the default addition of long_call and short_call attributes to functions. See Function Attributes, for information about the effects of these attributes.

long_calls
Set all subsequent functions to have the long_call attribute.
no_long_calls
Set all subsequent functions to have the short_call attribute.
long_calls_off
Do not affect the long_call or short_call attributes of subsequent functions.


Next: , Previous: ARM Pragmas, Up: Pragmas

5.46.2 RS/6000 and PowerPC Pragmas

The RS/6000 and PowerPC targets define one pragma for controlling whether or not the longcall attribute is added to function declarations by default. This pragma overrides the -mlongcall option, but not the longcall and shortcall attributes. See RS/6000 and PowerPC Options, for more information about when long calls are and are not necessary.

longcall (1)
Apply the longcall attribute to all subsequent function declarations.
longcall (0)
Do not apply the longcall attribute to subsequent function declarations.


Next: , Previous: RS/6000 and PowerPC Pragmas, Up: Pragmas

5.46.3 Darwin Pragmas

The following pragmas are available for all architectures running the Darwin operating system. These are useful for compatibility with other Mac OS compilers.

mark tokens...
This pragma is accepted, but has no effect.
options align=alignment
This pragma sets the alignment of fields in structures. The values of alignment may be mac68k, to emulate m68k alignment, or power, to emulate PowerPC alignment. Uses of this pragma nest properly; to restore the previous setting, use reset for the alignment.
segment tokens...
This pragma is accepted, but has no effect.
unused (var [, var]...)
This pragma declares variables to be possibly unused. GCC will not produce warnings for the listed variables. The effect is similar to that of the unused attribute, except that this pragma may appear anywhere within the variables' scopes.


Next: , Previous: Darwin Pragmas, Up: Pragmas

5.46.4 Solaris Pragmas

For compatibility with the SunPRO compiler, the following pragma is supported.

redefine_extname oldname newname
This pragma gives the C function oldname the assembler label newname. The pragma must appear before the function declaration. This pragma is equivalent to the asm labels extension (see Asm Labels). The preprocessor defines __PRAGMA_REDEFINE_EXTNAME if the pragma is available.


Previous: Solaris Pragmas, Up: Pragmas

5.46.5 Tru64 Pragmas

For compatibility with the Compaq C compiler, the following pragma is supported.

extern_prefix string
This pragma renames all subsequent function and variable declarations such that string is prepended to the name. This effect may be terminated by using another extern_prefix pragma with the empty string.

This pragma is similar in intent to to the asm labels extension (see Asm Labels) in that the system programmer wants to change the assembly-level ABI without changing the source-level API. The preprocessor defines __PRAGMA_EXTERN_PREFIX if the pragma is available.


Next: , Previous: Pragmas, Up: C Extensions

5.47 Unnamed struct/union fields within structs/unions.

For compatibility with other compilers, GCC allows you to define a structure or union that contains, as fields, structures and unions without names. For example:

     struct {
       int a;
       union {
         int b;
         float c;
       };
       int d;
     } foo;

In this example, the user would be able to access members of the unnamed union with code like foo.b. Note that only unnamed structs and unions are allowed, you may not have, for example, an unnamed int.

You must never create such structures that cause ambiguous field definitions. For example, this structure:

     struct {
       int a;
       struct {
         int a;
       };
     } foo;

It is ambiguous which a is being referred to with foo.a. Such constructs are not supported and must be avoided. In the future, such constructs may be detected and treated as compilation errors.


Previous: Unnamed Fields, Up: C Extensions

5.48 Thread-Local Storage

Thread-local storage (TLS) is a mechanism by which variables are allocated such that there is one instance of the variable per extant thread. The run-time model GCC uses to implement this originates in the IA-64 processor-specific ABI, but has since been migrated to other processors as well. It requires significant support from the linker (ld), dynamic linker (ld.so), and system libraries (libc.so and libpthread.so), so it is not available everywhere.

At the user level, the extension is visible with a new storage class keyword: __thread. For example:

     __thread int i;
     extern __thread struct state s;
     static __thread char *p;

The __thread specifier may be used alone, with the extern or static specifiers, but with no other storage class specifier. When used with extern or static, __thread must appear immediately after the other storage class specifier.

The __thread specifier may be applied to any global, file-scoped static, function-scoped static, or static data member of a class. It may not be applied to block-scoped automatic or non-static data member.

When the address-of operator is applied to a thread-local variable, it is evaluated at run-time and returns the address of the current thread's instance of that variable. An address so obtained may be used by any thread. When a thread terminates, any pointers to thread-local variables in that thread become invalid.

No static initialization may refer to the address of a thread-local variable.

In C++, if an initializer is present for a thread-local variable, it must be a constant-expression, as defined in 5.19.2 of the ANSI/ISO C++ standard.

See ELF Handling For Thread-Local Storage for a detailed explanation of the four thread-local storage addressing models, and how the run-time is expected to function.


Next: , Up: Thread-Local

5.48.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the exact semantics of the language extension.


Previous: C99 Thread-Local Edits, Up: Thread-Local

5.48.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage

The following are a set of changes to ISO/IEC 14882:1998 (aka C++98) that document the exact semantics of the language extension.


Next: , Previous: C Extensions, Up: Top

6 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use most of the C language extensions in your C++ programs). If you want to write code that checks whether these features are available, you can test for the GNU compiler the same way as for C programs: check for a predefined macro __GNUC__. You can also use __GNUG__ to test specifically for GNU C++ (see Predefined Macros (The GNU C Preprocessor)).


Next: , Up: C++ Extensions

6.1 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum” or the “maximum” of two arguments. In GNU C++ (but not in GNU C),

a <? b
is the minimum, returning the smaller of the numeric values a and b;
a >? b
is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can use a macro to return the minimum of two things in C++, as in the following example.

     #define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use int min = MIN (i, j); to set min to the minimum value of variables i and j.

However, side effects in X or Y may cause unintended behavior. For example, MIN (i++, j++) will fail, incrementing the smaller counter twice. The GNU C typeof extension allows you to write safe macros that avoid this kind of problem (see Typeof). However, writing MIN and MAX as macros also forces you to use function-call notation for a fundamental arithmetic operation. Using GNU C++ extensions, you can write int min = i <? j; instead.

Since <? and >? are built into the compiler, they properly handle expressions with side-effects; int min = i++ <? j++; works correctly.


Next: , Previous: Min and Max, Up: C++ Extensions

6.2 When is a Volatile Object Accessed?

Both the C and C++ standard have the concept of volatile objects. These are normally accessed by pointers and used for accessing hardware. The standards encourage compilers to refrain from optimizations concerning accesses to volatile objects that it might perform on non-volatile objects. The C standard leaves it implementation defined as to what constitutes a volatile access. The C++ standard omits to specify this, except to say that C++ should behave in a similar manner to C with respect to volatiles, where possible. The minimum either standard specifies is that at a sequence point all previous accesses to volatile objects have stabilized and no subsequent accesses have occurred. Thus an implementation is free to reorder and combine volatile accesses which occur between sequence points, but cannot do so for accesses across a sequence point. The use of volatiles does not allow you to violate the restriction on updating objects multiple times within a sequence point.

In most expressions, it is intuitively obvious what is a read and what is a write. For instance

     volatile int *dst = somevalue;
     volatile int *src = someothervalue;
     *dst = *src;

will cause a read of the volatile object pointed to by src and stores the value into the volatile object pointed to by dst. There is no guarantee that these reads and writes are atomic, especially for objects larger than int.

Less obvious expressions are where something which looks like an access is used in a void context. An example would be,

     volatile int *src = somevalue;
     *src;

With C, such expressions are rvalues, and as rvalues cause a read of the object, GCC interprets this as a read of the volatile being pointed to. The C++ standard specifies that such expressions do not undergo lvalue to rvalue conversion, and that the type of the dereferenced object may be incomplete. The C++ standard does not specify explicitly that it is this lvalue to rvalue conversion which is responsible for causing an access. However, there is reason to believe that it is, because otherwise certain simple expressions become undefined. However, because it would surprise most programmers, G++ treats dereferencing a pointer to volatile object of complete type in a void context as a read of the object. When the object has incomplete type, G++ issues a warning.

     struct S;
     struct T {int m;};
     volatile S *ptr1 = somevalue;
     volatile T *ptr2 = somevalue;
     *ptr1;
     *ptr2;

In this example, a warning is issued for *ptr1, and *ptr2 causes a read of the object pointed to. If you wish to force an error on the first case, you must force a conversion to rvalue with, for instance a static cast, static_cast<S>(*ptr1).

When using a reference to volatile, G++ does not treat equivalent expressions as accesses to volatiles, but instead issues a warning that no volatile is accessed. The rationale for this is that otherwise it becomes difficult to determine where volatile access occur, and not possible to ignore the return value from functions returning volatile references. Again, if you wish to force a read, cast the reference to an rvalue.


Next: , Previous: Volatiles, Up: C++ Extensions

6.3 Restricting Pointer Aliasing

As with gcc, g++ understands the C99 feature of restricted pointers, specified with the __restrict__, or __restrict type qualifier. Because you cannot compile C++ by specifying the -std=c99 language flag, restrict is not a keyword in C++.

In addition to allowing restricted pointers, you can specify restricted references, which indicate that the reference is not aliased in the local context.

     void fn (int *__restrict__ rptr, int &__restrict__ rref)
     {
       /* ... */
     }

In the body of fn, rptr points to an unaliased integer and rref refers to a (different) unaliased integer.

You may also specify whether a member function's this pointer is unaliased by using __restrict__ as a member function qualifier.

     void T::fn () __restrict__
     {
       /* ... */
     }

Within the body of T::fn, this will have the effective definition T *__restrict__ const this. Notice that the interpretation of a __restrict__ member function qualifier is different to that of const or volatile qualifier, in that it is applied to the pointer rather than the object. This is consistent with other compilers which implement restricted pointers.

As with all outermost parameter qualifiers, __restrict__ is ignored in function definition matching. This means you only need to specify __restrict__ in a function definition, rather than in a function prototype as well.


Next: , Previous: Restricted Pointers, Up: C++ Extensions

6.4 Vague Linkage

There are several constructs in C++ which require space in the object file but are not clearly tied to a single translation unit. We say that these constructs have “vague linkage”. Typically such constructs are emitted wherever they are needed, though sometimes we can be more clever.

Inline Functions
Inline functions are typically defined in a header file which can be included in many different compilations. Hopefully they can usually be inlined, but sometimes an out-of-line copy is necessary, if the address of the function is taken or if inlining fails. In general, we emit an out-of-line copy in all translation units where one is needed. As an exception, we only emit inline virtual functions with the vtable, since it will always require a copy.

Local static variables and string constants used in an inline function are also considered to have vague linkage, since they must be shared between all inlined and out-of-line instances of the function.

VTables
C++ virtual functions are implemented in most compilers using a lookup table, known as a vtable. The vtable contains pointers to the virtual functions provided by a class, and each object of the class contains a pointer to its vtable (or vtables, in some multiple-inheritance situations). If the class declares any non-inline, non-pure virtual functions, the first one is chosen as the “key method” for the class, and the vtable is only emitted in the translation unit where the key method is defined.

Note: If the chosen key method is later defined as inline, the vtable will still be emitted in every translation unit which defines it. Make sure that any inline virtuals are declared inline in the class body, even if they are not defined there.

type_info objects
C++ requires information about types to be written out in order to implement dynamic_cast, typeid and exception handling. For polymorphic classes (classes with virtual functions), the type_info object is written out along with the vtable so that dynamic_cast can determine the dynamic type of a class object at runtime. For all other types, we write out the type_info object when it is used: when applying typeid to an expression, throwing an object, or referring to a type in a catch clause or exception specification.
Template Instantiations
Most everything in this section also applies to template instantiations, but there are other options as well. See Where's the Template?.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or Solaris 2, or on Microsoft Windows, duplicate copies of these constructs will be discarded at link time. This is known as COMDAT support.

On targets that don't support COMDAT, but do support weak symbols, GCC will use them. This way one copy will override all the others, but the unused copies will still take up space in the executable.

For targets which do not support either COMDAT or weak symbols, most entities with vague linkage will be emitted as local symbols to avoid duplicate definition errors from the linker. This will not happen for local statics in inlines, however, as having multiple copies will almost certainly break things.

See Declarations and Definitions in One Header, for another way to control placement of these constructs.


Next: , Previous: Vague Linkage, Up: C++ Extensions

6.5 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need two kinds of things for each object that you use across more than one source file. First, you need an interface specification, describing its structure with type declarations and function prototypes. Second, you need the implementation itself. It can be tedious to maintain a separate interface description in a header file, in parallel to the actual implementation. It is also dangerous, since separate interface and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the nonce, you must use one of two #pragma commands; in a future release of GNU C++, an alternative mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with #pragma interface in the source code. This allows the compiler to use the header file only as an interface specification when ordinary source files incorporate it with #include. In the single source file where the full implementation belongs, you can use either a naming convention or #pragma implementation to indicate this alternate use of the header file.

#pragma interface
#pragma interface "subdir/objects.h"
Use this directive in header files that define object classes, to save space in most of the object files that use those classes. Normally, local copies of certain information (backup copies of inline member functions, debugging information, and the internal tables that implement virtual functions) must be kept in each object file that includes class definitions. You can use this pragma to avoid such duplication. When a header file containing #pragma interface is included in a compilation, this auxiliary information will not be generated (unless the main input source file itself uses #pragma implementation). Instead, the object files will contain references to be resolved at link time.

The second form of this directive is useful for the case where you have multiple headers with the same name in different directories. If you use this form, you must specify the same string to #pragma implementation.

#pragma implementation
#pragma implementation "objects.h"
Use this pragma in a main input file, when you want full output from included header files to be generated (and made globally visible). The included header file, in turn, should use #pragma interface. Backup copies of inline member functions, debugging information, and the internal tables used to implement virtual functions are all generated in implementation files.

If you use #pragma implementation with no argument, it applies to an include file with the same basename4 as your source file. For example, in allclass.cc, giving just #pragma implementation by itself is equivalent to #pragma implementation "allclass.h".

In versions of GNU C++ prior to 2.6.0 allclass.h was treated as an implementation file whenever you would include it from allclass.cc even if you never specified #pragma implementation. This was deemed to be more trouble than it was worth, however, and disabled.

If you use an explicit #pragma implementation, it must appear in your source file before you include the affected header files.

Use the string argument if you want a single implementation file to include code from multiple header files. (You must also use #include to include the header file; #pragma implementation only specifies how to use the file—it doesn't actually include it.)

There is no way to split up the contents of a single header file into multiple implementation files.

#pragma implementation and #pragma interface also have an effect on function inlining.

If you define a class in a header file marked with #pragma interface, the effect on a function defined in that class is similar to an explicit extern declaration—the compiler emits no code at all to define an independent version of the function. Its definition is used only for inlining with its callers.

Conversely, when you include the same header file in a main source file that declares it as #pragma implementation, the compiler emits code for the function itself; this defines a version of the function that can be found via pointers (or by callers compiled without inlining). If all calls to the function can be inlined, you can avoid emitting the function by compiling with -fno-implement-inlines. If any calls were not inlined, you will get linker errors.


Next: , Previous: C++ Interface, Up: C++ Extensions

6.6 Where's the Template?

C++ templates are the first language feature to require more intelligence from the environment than one usually finds on a UNIX system. Somehow the compiler and linker have to make sure that each template instance occurs exactly once in the executable if it is needed, and not at all otherwise. There are two basic approaches to this problem, which I will refer to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by adding the code equivalent of common blocks to their linker; the compiler emits template instances in each translation unit that uses them, and the linker collapses them together. The advantage of this model is that the linker only has to consider the object files themselves; there is no external complexity to worry about. This disadvantage is that compilation time is increased because the template code is being compiled repeatedly. Code written for this model tends to include definitions of all templates in the header file, since they must be seen to be instantiated.
Cfront model
The AT&T C++ translator, Cfront, solved the template instantiation problem by creating the notion of a template repository, an automatically maintained place where template instances are stored. A more modern version of the repository works as follows: As individual object files are built, the compiler places any template definitions and instantiations encountered in the repository. At link time, the link wrapper adds in the objects in the repository and compiles any needed instances that were not previously emitted. The advantages of this model are more optimal compilation speed and the ability to use the system linker; to implement the Borland model a compiler vendor also needs to replace the linker. The disadvantages are vastly increased complexity, and thus potential for error; for some code this can be just as transparent, but in practice it can been very difficult to build multiple programs in one directory and one program in multiple directories. Code written for this model tends to separate definitions of non-inline member templates into a separate file, which should be compiled separately.

When used with GNU ld version 2.8 or later on an ELF system such as Linux/GNU or Solaris 2, or on Microsoft Windows, g++ supports the Borland model. On other systems, g++ implements neither automatic model.

A future version of g++ will support a hybrid model whereby the compiler will emit any instantiations for which the template definition is included in the compile, and store template definitions and instantiation context information into the object file for the rest. The link wrapper will extract that information as necessary and invoke the compiler to produce the remaining instantiations. The linker will then combine duplicate instantiations.

In the mean time, you have the following options for dealing with template instantiations:

  1. Compile your template-using code with -frepo. The compiler will generate files with the extension .rpo listing all of the template instantiations used in the corresponding object files which could be instantiated there; the link wrapper, collect2, will then update the .rpo files to tell the compiler where to place those instantiations and rebuild any affected object files. The link-time overhead is negligible after the first pass, as the compiler will continue to place the instantiations in the same files.

    This is your best option for application code written for the Borland model, as it will just work. Code written for the Cfront model will need to be modified so that the template definitions are available at one or more points of instantiation; usually this is as simple as adding #include <tmethods.cc> to the end of each template header.

    For library code, if you want the library to provide all of the template instantiations it needs, just try to link all of its object files together; the link will fail, but cause the instantiations to be generated as a side effect. Be warned, however, that this may cause conflicts if multiple libraries try to provide the same instantiations. For greater control, use explicit instantiation as described in the next option.

  2. Compile your code with -fno-implicit-templates to disable the implicit generation of template instances, and explicitly instantiate all the ones you use. This approach requires more knowledge of exactly which instances you need than do the others, but it's less mysterious and allows greater control. You can scatter the explicit instantiations throughout your program, perhaps putting them in the translation units where the instances are used or the translation units that define the templates themselves; you can put all of the explicit instantiations you need into one big file; or you can create small files like
              #include "Foo.h"
              #include "Foo.cc"
              
              template class Foo<int>;
              template ostream& operator <<
                              (ostream&, const Foo<int>&);
         

    for each of the instances you need, and create a template instantiation library from those.

    If you are using Cfront-model code, you can probably get away with not using -fno-implicit-templates when compiling files that don't #include the member template definitions.

    If you use one big file to do the instantiations, you may want to compile it without -fno-implicit-templates so you get all of the instances required by your explicit instantiations (but not by any other files) without having to specify them as well.

    g++ has extended the template instantiation syntax given in the ISO standard to allow forward declaration of explicit instantiations (with extern), instantiation of the compiler support data for a template class (i.e. the vtable) without instantiating any of its members (with inline), and instantiation of only the static data members of a template class, without the support data or member functions (with (static):

              extern template int max (int, int);
              inline template class Foo<int>;
              static template class Foo<int>;
         
  3. Do nothing. Pretend g++ does implement automatic instantiation management. Code written for the Borland model will work fine, but each translation unit will contain instances of each of the templates it uses. In a large program, this can lead to an unacceptable amount of code duplication.

    See Declarations and Definitions in One Header, for more discussion of these pragmas.


Next: , Previous: Template Instantiation, Up: C++ Extensions

6.7 Extracting the function pointer from a bound pointer to member function

In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts to handle all the possible call mechanisms; the PMF needs to store information about how to adjust the this pointer, and if the function pointed to is virtual, where to find the vtable, and where in the vtable to look for the member function. If you are using PMFs in an inner loop, you should really reconsider that decision. If that is not an option, you can extract the pointer to the function that would be called for a given object/PMF pair and call it directly inside the inner loop, to save a bit of time.

Note that you will still be paying the penalty for the call through a function pointer; on most modern architectures, such a call defeats the branch prediction features of the CPU. This is also true of normal virtual function calls.

The syntax for this extension is

     extern A a;
     extern int (A::*fp)();
     typedef int (*fptr)(A *);
     
     fptr p = (fptr)(a.*fp);

For PMF constants (i.e. expressions of the form &Klasse::Member), no object is needed to obtain the address of the function. They can be converted to function pointers directly:

     fptr p1 = (fptr)(&A::foo);

You must specify -Wno-pmf-conversions to use this extension.


Next: , Previous: Bound member functions, Up: C++ Extensions

6.8 C++-Specific Variable, Function, and Type Attributes

Some attributes only make sense for C++ programs.

init_priority (priority)

In Standard C++, objects defined at namespace scope are guaranteed to be initialized in an order in strict accordance with that of their definitions in a given translation unit. No guarantee is made for initializations across translation units. However, GNU C++ allows users to control the order of initialization of objects defined at namespace scope with the init_priority attribute by specifying a relative priority, a constant integral expression currently bounded between 101 and 65535 inclusive. Lower numbers indicate a higher priority.

In the following example, A would normally be created before B, but the init_priority attribute has reversed that order:

          Some_Class  A  __attribute__ ((init_priority (2000)));
          Some_Class  B  __attribute__ ((init_priority (543)));
     

Note that the particular values of priority do not matter; only their relative ordering.

java_interface
This type attribute informs C++ that the class is a Java interface. It may only be applied to classes declared within an extern "Java" block. Calls to methods declared in this interface will be dispatched using GCJ's interface table mechanism, instead of regular virtual table dispatch.


Next: , Previous: C++ Attributes, Up: C++ Extensions

6.9 Java Exceptions

The Java language uses a slightly different exception handling model from C++. Normally, GNU C++ will automatically detect when you are writing C++ code that uses Java exceptions, and handle them appropriately. However, if C++ code only needs to execute destructors when Java exceptions are thrown through it, GCC will guess incorrectly. Sample problematic code is:

       struct S { ~S(); };
       extern void bar();    // is written in Java, and may throw exceptions
       void foo()
       {
         S s;
         bar();
       }

The usual effect of an incorrect guess is a link failure, complaining of a missing routine called __gxx_personality_v0.

You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing #pragma GCC java_exceptions at the head of the file. This #pragma must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them.

You cannot mix Java and C++ exceptions in the same translation unit. It is believed to be safe to throw a C++ exception from one file through another file compiled for the Java exception model, or vice versa, but there may be bugs in this area.


Next: , Previous: Java Exceptions, Up: C++ Extensions

6.10 Deprecated Features

In the past, the GNU C++ compiler was extended to experiment with new features, at a time when the C++ language was still evolving. Now that the C++ standard is complete, some of those features are superseded by superior alternatives. Using the old features might cause a warning in some cases that the feature will be dropped in the future. In other cases, the feature might be gone already.

While the list below is not exhaustive, it documents some of the options that are now deprecated:

-fexternal-templates
-falt-external-templates
These are two of the many ways for g++ to implement template instantiation. See Template Instantiation. The C++ standard clearly defines how template definitions have to be organized across implementation units. g++ has an implicit instantiation mechanism that should work just fine for standard-conforming code.
-fstrict-prototype
-fno-strict-prototype
Previously it was possible to use an empty prototype parameter list to indicate an unspecified number of parameters (like C), rather than no parameters, as C++ demands. This feature has been removed, except where it is required for backwards compatibility See Backwards Compatibility.

The named return value extension has been deprecated, and is now removed from g++.

The use of initializer lists with new expressions has been deprecated, and is now removed from g++.

Floating and complex non-type template parameters have been deprecated, and are now removed from g++.

The implicit typename extension has been deprecated and will be removed from g++ at some point. In some cases g++ determines that a dependent type such as TPL<T>::X is a type without needing a typename keyword, contrary to the standard.


Previous: Deprecated Features, Up: C++ Extensions

6.11 Backwards Compatibility

Now that there is a definitive ISO standard C++, G++ has a specification to adhere to. The C++ language evolved over time, and features that used to be acceptable in previous drafts of the standard, such as the ARM [Annotated C++ Reference Manual], are no longer accepted. In order to allow compilation of C++ written to such drafts, G++ contains some backwards compatibilities. All such backwards compatibility features are liable to disappear in future versions of G++. They should be considered deprecated See Deprecated Features.

For scope
If a variable is declared at for scope, it used to remain in scope until the end of the scope which contained the for statement (rather than just within the for scope). G++ retains this, but issues a warning, if such a variable is accessed outside the for scope.
Implicit C language
Old C system header files did not contain an extern "C" {...} scope to set the language. On such systems, all header files are implicitly scoped inside a C language scope. Also, an empty prototype () will be treated as an unspecified number of arguments, rather than no arguments, as C++ demands.


Next: , Previous: C++ Extensions, Up: Top

7 GNU Objective-C runtime features

This document is meant to describe some of the GNU Objective-C runtime features. It is not intended to teach you Objective-C, there are several resources on the Internet that present the language. Questions and comments about this document to Ovidiu Predescu ovidiu@cup.hp.com.


Next: , Previous: Objective-C, Up: Objective-C

7.1 +load: Executing code before main

The GNU Objective-C runtime provides a way that allows you to execute code before the execution of the program enters the main function. The code is executed on a per-class and a per-category basis, through a special class method +load.

This facility is very useful if you want to initialize global variables which can be accessed by the program directly, without sending a message to the class first. The usual way to initialize global variables, in the +initialize method, might not be useful because +initialize is only called when the first message is sent to a class object, which in some cases could be too late.

Suppose for example you have a FileStream class that declares Stdin, Stdout and Stderr as global variables, like below:

     
     FileStream *Stdin = nil;
     FileStream *Stdout = nil;
     FileStream *Stderr = nil;
     
     @implementation FileStream
     
     + (void)initialize
     {
         Stdin = [[FileStream new] initWithFd:0];
         Stdout = [[FileStream new] initWithFd:1];
         Stderr = [[FileStream new] initWithFd:2];
     }
     
     /* Other methods here */
     @end
     

In this example, the initialization of Stdin, Stdout and Stderr in +initialize occurs too late. The programmer can send a message to one of these objects before the variables are actually initialized, thus sending messages to the nil object. The +initialize method which actually initializes the global variables is not invoked until the first message is sent to the class object. The solution would require these variables to be initialized just before entering main.

The correct solution of the above problem is to use the +load method instead of +initialize:

     
     @implementation FileStream
     
     + (void)load
     {
         Stdin = [[FileStream new] initWithFd:0];
         Stdout = [[FileStream new] initWithFd:1];
         Stderr = [[FileStream new] initWithFd:2];
     }
     
     /* Other methods here */
     @end
     

The +load is a method that is not overridden by categories. If a class and a category of it both implement +load, both methods are invoked. This allows some additional initializations to be performed in a category.

This mechanism is not intended to be a replacement for +initialize. You should be aware of its limitations when you decide to use it instead of +initialize.


Previous: Executing code before main, Up: Executing code before main

7.1.1 What you can and what you cannot do in +load

The +load implementation in the GNU runtime guarantees you the following things:

In particular, the following things, even if they can work in a particular case, are not guaranteed:

You should make no assumptions about receiving +load in sibling classes when you write +load of a class. The order in which sibling classes receive +load is not guaranteed.

The order in which +load and +initialize are called could be problematic if this matters. If you don't allocate objects inside +load, it is guaranteed that +load is called before +initialize. If you create an object inside +load the +initialize method of object's class is invoked even if +load was not invoked. Note if you explicitly call +load on a class, +initialize will be called first. To avoid possible problems try to implement only one of these methods.

The +load method is also invoked when a bundle is dynamically loaded into your running program. This happens automatically without any intervening operation from you. When you write bundles and you need to write +load you can safely create and send messages to objects whose classes already exist in the running program. The same restrictions as above apply to classes defined in bundle.


Next: , Previous: Executing code before main, Up: Objective-C

7.2 Type encoding

The Objective-C compiler generates type encodings for all the types. These type encodings are used at runtime to find out information about selectors and methods and about objects and classes.

The types are encoded in the following way:

char c
unsigned char C
short s
unsigned short S
int i
unsigned int I
long l
unsigned long L
long long q
unsigned long long Q
float f
double d
void v
id @
Class #
SEL :
char* *
unknown type ?
bit-fields b followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below)

The encoding of bit-fields has changed to allow bit-fields to be properly handled by the runtime functions that compute sizes and alignments of types that contain bit-fields. The previous encoding contained only the size of the bit-field. Using only this information it is not possible to reliably compute the size occupied by the bit-field. This is very important in the presence of the Boehm's garbage collector because the objects are allocated using the typed memory facility available in this collector. The typed memory allocation requires information about where the pointers are located inside the object.

The position in the bit-field is the position, counting in bits, of the bit closest to the beginning of the structure.

The non-atomic types are encoded as follows:

pointers ^ followed by the pointed type.
arrays [ followed by the number of elements in the array followed by the type of the elements followed by ]
structures { followed by the name of the structure (or ? if the structure is unnamed), the = sign, the type of the members and by }
unions ( followed by the name of the structure (or ? if the union is unnamed), the = sign, the type of the members followed by )

Here are some types and their encodings, as they are generated by the compiler on an i386 machine:


Objective-C type Compiler encoding
     int a[10];

[10i]
     struct {
       int i;
       float f[3];
       int a:3;
       int b:2;
       char c;
     }

{?=i[3f]b128i3b131i2c}


In addition to the types the compiler also encodes the type specifiers. The table below describes the encoding of the current Objective-C type specifiers:

Specifier Encoding
const r
in n
inout N
out o
bycopy O
oneway V


The type specifiers are encoded just before the type. Unlike types however, the type specifiers are only encoded when they appear in method argument types.


Next: , Previous: Type encoding, Up: Objective-C

7.3 Garbage Collection

Support for a new memory management policy has been added by using a powerful conservative garbage collector, known as the Boehm-Demers-Weiser conservative garbage collector. It is available from http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

To enable the support for it you have to configure the compiler using an additional argument, --enable-objc-gc. You need to have garbage collector installed before building the compiler. This will build an additional runtime library which has several enhancements to support the garbage collector. The new library has a new name, libobjc_gc.a to not conflict with the non-garbage-collected library.

When the garbage collector is used, the objects are allocated using the so-called typed memory allocation mechanism available in the Boehm-Demers-Weiser collector. This mode requires precise information on where pointers are located inside objects. This information is computed once per class, immediately after the class has been initialized.

There is a new runtime function class_ivar_set_gcinvisible() which can be used to declare a so-called weak pointer reference. Such a pointer is basically hidden for the garbage collector; this can be useful in certain situations, especially when you want to keep track of the allocated objects, yet allow them to be collected. This kind of pointers can only be members of objects, you cannot declare a global pointer as a weak reference. Every type which is a pointer type can be declared a weak pointer, including id, Class and SEL.

Here is an example of how to use this feature. Suppose you want to implement a class whose instances hold a weak pointer reference; the following class does this:

     
     @interface WeakPointer : Object
     {
         const void* weakPointer;
     }
     
     - initWithPointer:(const void*)p;
     - (const void*)weakPointer;
     @end
     
     
     @implementation WeakPointer
     
     + (void)initialize
     {
       class_ivar_set_gcinvisible (self, "weakPointer", YES);
     }
     
     - initWithPointer:(const void*)p
     {
       weakPointer = p;
       return self;
     }
     
     - (const void*)weakPointer
     {
       return weakPointer;
     }
     
     @end
     

Weak pointers are supported through a new type character specifier represented by the ! character. The class_ivar_set_gcinvisible() function adds or removes this specifier to the string type description of the instance variable named as argument.


Next: , Previous: Garbage Collection, Up: Objective-C

7.4 Constant string objects

GNU Objective-C provides constant string objects that are generated directly by the compiler. You declare a constant string object by prefixing a C constant string with the character @:

       id myString = @"this is a constant string object";

The constant string objects are by default instances of the NXConstantString class which is provided by the GNU Objective-C runtime. To get the definition of this class you must include the objc/NXConstStr.h header file.

User defined libraries may want to implement their own constant string class. To be able to support them, the GNU Objective-C compiler provides a new command line options -fconstant-string-class=class-name. The provided class should adhere to a strict structure, the same as NXConstantString's structure:

     
     @interface MyConstantStringClass
     {
       Class isa;
       char *c_string;
       unsigned int len;
     }
     @end
     

NXConstantString inherits from Object; user class libraries may choose to inherit the customized constant string class from a different class than Object. There is no requirement in the methods the constant string class has to implement, but the final ivar layout of the class must be the compatible with the given structure.

When the compiler creates the statically allocated constant string object, the c_string field will be filled by the compiler with the string; the length field will be filled by the compiler with the string length; the isa pointer will be filled with NULL by the compiler, and it will later be fixed up automatically at runtime by the GNU Objective-C runtime library to point to the class which was set by the -fconstant-string-class option when the object file is loaded (if you wonder how it works behind the scenes, the name of the class to use, and the list of static objects to fixup, are stored by the compiler in the object file in a place where the GNU runtime library will find them at runtime).

As a result, when a file is compiled with the -fconstant-string-class option, all the constant string objects will be instances of the class specified as argument to this option. It is possible to have multiple compilation units referring to different constant string classes, neither the compiler nor the linker impose any restrictions in doing this.


Previous: Constant string objects, Up: Objective-C

7.5 compatibility_alias

This is a feature of the Objective-C compiler rather than of the runtime, anyway since it is documented nowhere and its existence was forgotten, we are documenting it here.

The keyword @compatibility_alias allows you to define a class name as equivalent to another class name. For example:

     @compatibility_alias WOApplication GSWApplication;

tells the compiler that each time it encounters WOApplication as a class name, it should replace it with GSWApplication (that is, WOApplication is just an alias for GSWApplication).

There are some constraints on how this can be used—


Next: , Previous: Objective-C, Up: Top

8 Binary Compatibility

Binary compatibility encompasses several related concepts:

application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with binary representations of a program, including compilers, assemblers, linkers, and language runtime support. Some ABIs are formal with a written specification, possibly designed by multiple interested parties. Others are simply the way things are actually done by a particular set of tools.
ABI conformance
A compiler conforms to an ABI if it generates code that follows all of the specifications enumerated by that ABI. A library conforms to an ABI if it is implemented according to that ABI. An application conforms to an ABI if it is built using tools that conform to that ABI and does not contain source code that specifically changes behavior specified by the ABI.
calling conventions
Calling conventions are a subset of an ABI that specify of how arguments are passed and function results are returned.
interoperability
Different sets of tools are interoperable if they generate files that can be used in the same program. The set of tools includes compilers, assemblers, linkers, libraries, header files, startup files, and debuggers. Binaries produced by different sets of tools are not interoperable unless they implement the same ABI. This applies to different versions of the same tools as well as tools from different vendors.
intercallability
Whether a function in a binary built by one set of tools can call a function in a binary built by a different set of tools is a subset of interoperability.
implementation-defined features
Language standards include lists of implementation-defined features whose behavior can vary from one implementation to another. Some of these features are normally covered by a platform's ABI and others are not. The features that are not covered by an ABI generally affect how a program behaves, but not intercallability.
compatibility
Conformance to the same ABI and the same behavior of implementation-defined features are both relevant for compatibility.

The application binary interface implemented by a C or C++ compiler affects code generation and runtime support for:

In addition, the application binary interface implemented by a C++ compiler affects code generation and runtime support for:

Some GCC compilation options cause the compiler to generate code that does not conform to the platform's default ABI. Other options cause different program behavior for implementation-defined features that are not covered by an ABI. These options are provided for consistency with other compilers that do not follow the platform's default ABI or the usual behavior of implementation-defined features for the platform. Be very careful about using such options.

Most platforms have a well-defined ABI that covers C code, but ABIs that cover C++ functionality are not yet common.

Starting with GCC 3.2, GCC binary conventions for C++ are based on a written, vendor-neutral C++ ABI that was designed to be specific to 64-bit Itanium but also includes generic specifications that apply to any platform. This C++ ABI is also implemented by other compiler vendors on some platforms, notably GNU/Linux and BSD systems. We have tried hard to provide a stable ABI that will be compatible with future GCC releases, but it is possible that we will encounter problems that make this difficult. Such problems could include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or bugs in the implementation of the ABI in different compilers. GCC's -Wabi switch warns when G++ generates code that is probably not compatible with the C++ ABI.

The C++ library used with a C++ compiler includes the Standard C++ Library, with functionality defined in the C++ Standard, plus language runtime support. The runtime support is included in a C++ ABI, but there is no formal ABI for the Standard C++ Library. Two implementations of that library are interoperable if one follows the de-facto ABI of the other and if they are both built with the same compiler, or with compilers that conform to the same ABI for C++ compiler and runtime support.

When G++ and another C++ compiler conform to the same C++ ABI, but the implementations of the Standard C++ Library that they normally use do not follow the same ABI for the Standard C++ Library, object files built with those compilers can be used in the same program only if they use the same C++ library. This requires specifying the location of the C++ library header files when invoking the compiler whose usual library is not being used. The location of GCC's C++ header files depends on how the GCC build was configured, but can be seen by using the G++ -v option. With default configuration options for G++ 3.3 the compile line for a different C++ compiler needs to include

         -Igcc_install_directory/include/c++/3.3

Similarly, compiling code with G++ that must use a C++ library other than the GNU C++ library requires specifying the location of the header files for that other library.

The most straightforward way to link a program to use a particular C++ library is to use a C++ driver that specifies that C++ library by default. The g++ driver, for example, tells the linker where to find GCC's C++ library (libstdc++) plus the other libraries and startup files it needs, in the proper order.

If a program must use a different C++ library and it's not possible to do the final link using a C++ driver that uses that library by default, it is necessary to tell g++ the location and name of that library. It might also be necessary to specify different startup files and other runtime support libraries, and to suppress the use of GCC's support libraries with one or more of the options -nostdlib, -nostartfiles, and -nodefaultlibs.


Next: , Previous: Compatibility, Up: Top

9 gcov—a Test Coverage Program

gcov is a tool you can use in conjunction with GCC to test code coverage in your programs.


Next: , Up: Gcov

9.1 Introduction to gcov

gcov is a test coverage program. Use it in concert with GCC to analyze your programs to help create more efficient, faster running code and to discover untested parts of your program. You can use gcov as a profiling tool to help discover where your optimization efforts will best affect your code. You can also use gcov along with the other profiling tool, gprof, to assess which parts of your code use the greatest amount of computing time.

Profiling tools help you analyze your code's performance. Using a profiler such as gcov or gprof, you can find out some basic performance statistics, such as:

Once you know these things about how your code works when compiled, you can look at each module to see which modules should be optimized. gcov helps you determine where to work on optimization.

Software developers also use coverage testing in concert with testsuites, to make sure software is actually good enough for a release. Testsuites can verify that a program works as expected; a coverage program tests to see how much of the program is exercised by the testsuite. Developers can then determine what kinds of test cases need to be added to the testsuites to create both better testing and a better final product.

You should compile your code without optimization if you plan to use gcov because the optimization, by combining some lines of code into one function, may not give you as much information as you need to look for `hot spots' where the code is using a great deal of computer time. Likewise, because gcov accumulates statistics by line (at the lowest resolution), it works best with a programming style that places only one statement on each line. If you use complicated macros that expand to loops or to other control structures, the statistics are less helpful—they only report on the line where the macro call appears. If your complex macros behave like functions, you can replace them with inline functions to solve this problem.

gcov creates a logfile called sourcefile.gcov which indicates how many times each line of a source file sourcefile.c has executed. You can use these logfiles along with gprof to aid in fine-tuning the performance of your programs. gprof gives timing information you can use along with the information you get from gcov.

gcov works only on code compiled with GCC. It is not compatible with any other profiling or test coverage mechanism.


Next: , Previous: Gcov Intro, Up: Gcov

9.2 Invoking gcov

     gcov [options] sourcefile

gcov accepts the following options:

-h
--help
Display help about using gcov (on the standard output), and exit without doing any further processing.
-v
--version
Display the gcov version number (on the standard output), and exit without doing any further processing.
-b
--branch-probabilities
Write branch frequencies to the output file, and write branch summary info to the standard output. This option allows you to see how often each branch in your program was taken.
-c
--branch-counts
Write branch frequencies as the number of branches taken, rather than the percentage of branches taken.
-n
--no-output
Do not create the gcov output file.
-l
--long-file-names
Create long file names for included source files. For example, if the header file x.h contains code, and was included in the file a.c, then running gcov on the file a.c will produce an output file called a.c##x.h.gcov instead of x.h.gcov. This can be useful if x.h is included in multiple source files.
-p
--preserve-paths
Preserve complete path information in the names of generated .gcov files. Without this option, just the filename component is used. With this option, all directories are used, with '/' characters translated to '#' characters, '.' directory components removed and '..' components renamed to '^'. This is useful if sourcefiles are in several different directories. It also affects the -l option.
-f
--function-summaries
Output summaries for each function in addition to the file level summary.
-o directory|file
--object-directory directory
--object-file file
Specify either the directory containing the gcov data files, or the object path name. The .bb, .bbg, and .da data files are searched for using this option. If a directory is specified, the data files are in that directory and named after the source file name, without its extension. If a file is specified here, the data files are named after that file, without its extension. If this option is not supplied, it defaults to the current directory.

gcov should be run with the current directory the same as that when you invoked the compiler. Otherwise it will not be able to locate the source files. gcov produces files called mangledname.gcov in the current directory. These contain the coverage information of the source file they correspond to. One .gcov file is produced for each source file containing code, which was compiled to produce the data files. The .gcov files contain the ':' separated fields along with program source code. The format is

     execution_count:line_number:source line text

Additional block information may succeed each line, when requested by command line option. The execution_count is - for lines containing no code and ##### for lines which were never executed. Some lines of information at the start have line_number of zero.

When printing percentages, 0% and 100% are only printed when the values are exactly 0% and 100% respectively. Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary value.

When using gcov, you must first compile your program with two special GCC options: -fprofile-arcs -ftest-coverage. This tells the compiler to generate additional information needed by gcov (basically a flow graph of the program) and also includes additional code in the object files for generating the extra profiling information needed by gcov. These additional files are placed in the directory where the object file is located.

Running the program will cause profile output to be generated. For each source file compiled with -fprofile-arcs, an accompanying .da file will be placed in the object file directory.

Running gcov with your program's source file names as arguments will now produce a listing of the code along with frequency of execution for each line. For example, if your program is called tmp.c, this is what you see when you use the basic gcov facility:

     $ gcc -fprofile-arcs -ftest-coverage tmp.c
     $ a.out
     $ gcov tmp.c
     90.00% of 10 source lines executed in file tmp.c
     Creating tmp.c.gcov.

The file tmp.c.gcov contains output from gcov. Here is a sample:

             -:    0:Source:tmp.c
             -:    0:Object:tmp.bb
             -:    1:#include <stdio.h>
             -:    2:
             -:    3:int main (void)
             1:    4:{
             1:    5:  int i, total;
             -:    6:
             1:    7:  total = 0;
             -:    8:
            11:    9:  for (i = 0; i < 10; i++)
            10:   10:    total += i;
             -:   11:
             1:   12:  if (total != 45)
         #####:   13:    printf ("Failure\n");
             -:   14:  else
             1:   15:    printf ("Success\n");
             1:   16:  return 0;
             1:   17:}

When you use the -b option, your output looks like this:

     $ gcov -b tmp.c
     90.00% of 10 source lines executed in file tmp.c
     80.00% of 5 branches executed in file tmp.c
     80.00% of 5 branches taken at least once in file tmp.c
     50.00% of 2 calls executed in file tmp.c
     Creating tmp.c.gcov.

Here is a sample of a resulting tmp.c.gcov file:

             -:    0:Source:tmp.c
             -:    0:Object:tmp.bb
             -:    1:#include <stdio.h>
             -:    2:
             -:    3:int main (void)
             1:    4:{
             1:    5:  int i, total;
             -:    6:
             1:    7:  total = 0;
             -:    8:
            11:    9:  for (i = 0; i < 10; i++)
     branch  0: taken 90%
     branch  1: taken 100%
     branch  2: taken 100%
            10:   10:    total += i;
             -:   11:
             1:   12:  if (total != 45)
     branch  0: taken 100%
         #####:   13:    printf ("Failure\n");
     call    0: never executed
     branch  1: never executed
             -:   14:  else
             1:   15:    printf ("Success\n");
     call    0: returns 100%
             1:   16:  return 0;
             1:   17:}

For each basic block, a line is printed after the last line of the basic block describing the branch or call that ends the basic block. There can be multiple branches and calls listed for a single source line if there are multiple basic blocks that end on that line. In this case, the branches and calls are each given a number. There is no simple way to map these branches and calls back to source constructs. In general, though, the lowest numbered branch or call will correspond to the leftmost construct on the source line.

For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was taken divided by the number of times the branch was executed will be printed. Otherwise, the message “never executed” is printed.

For a call, if it was executed at least once, then a percentage indicating the number of times the call returned divided by the number of times the call was executed will be printed. This will usually be 100%, but may be less for functions call exit or longjmp, and thus may not return every time they are called.

The execution counts are cumulative. If the example program were executed again without removing the .da file, the count for the number of times each line in the source was executed would be added to the results of the previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data over a number of program runs as part of a test verification suite, or to provide more accurate long-term information over a large number of program runs.

The data in the .da files is saved immediately before the program exits. For each source file compiled with -fprofile-arcs, the profiling code first attempts to read in an existing .da file; if the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file.


Next: , Previous: Invoking Gcov, Up: Gcov

9.3 Using gcov with GCC Optimization

If you plan to use gcov to help optimize your code, you must first compile your program with two special GCC options: -fprofile-arcs -ftest-coverage. Aside from that, you can use any other GCC options; but if you want to prove that every single line in your program was executed, you should not compile with optimization at the same time. On some machines the optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this:

     if (a != b)
       c = 1;
     else
       c = 0;

can be compiled into one instruction on some machines. In this case, there is no way for gcov to calculate separate execution counts for each line because there isn't separate code for each line. Hence the gcov output looks like this if you compiled the program with optimization:

           100:   12:if (a != b)
           100:   13:  c = 1;
           100:   14:else
           100:   15:  c = 0;

The output shows that this block of code, combined by optimization, executed 100 times. In one sense this result is correct, because there was only one instruction representing all four of these lines. However, the output does not indicate how many times the result was 0 and how many times the result was 1.


Previous: Gcov and Optimization, Up: Gcov

9.4 Brief description of gcov data files

gcov uses three files for doing profiling. The names of these files are derived from the original source file by substituting the file suffix with either .bb, .bbg, or .da. All of these files are placed in the same directory as the source file, and contain data stored in a platform-independent method.

The .bb and .bbg files are generated when the source file is compiled with the GCC -ftest-coverage option. The .bb file contains a list of source files (including headers), functions within those files, and line numbers corresponding to each basic block in the source file.

The .bb file format consists of several lists of 4-byte integers which correspond to the line numbers of each basic block in the file. Each list is terminated by a line number of 0. A line number of −1 is used to designate that the source file name (padded to a 4-byte boundary and followed by another −1) follows. In addition, a line number of −2 is used to designate that the name of a function (also padded to a 4-byte boundary and followed by a −2) follows.

The .bbg file is used to reconstruct the program flow graph for the source file. It contains a list of the program flow arcs (possible branches taken from one basic block to another) for each function which, in combination with the .bb file, enables gcov to reconstruct the program flow.

In the .bbg file, the format is:

             name of function #0
             checksum of function #0
             number of basic blocks for function #0 (4-byte number)
             total number of arcs for function #0 (4-byte number)
             count of arcs in basic block #0 (4-byte number)
             destination basic block of arc #0 (4-byte number)
             flag bits (4-byte number)
             destination basic block of arc #1 (4-byte number)
             flag bits (4-byte number)
             ...
             destination basic block of arc #N (4-byte number)
             flag bits (4-byte number)
             count of arcs in basic block #1 (4-byte number)
             destination basic block of arc #0 (4-byte number)
             flag bits (4-byte number)
             ...

A −1 (stored as a 4-byte number) is used to separate each function's list of basic blocks, and to verify that the file has been read correctly.

The function name is stored as a −1 (4 bytes), the length (4 bytes), the name itself (padded to 4-byte boundary) followed by a −1 (4 bytes).

The flags are defined as follows:

The .da file is generated when a program containing object files built with the GCC -fprofile-arcs option is executed. A separate .da file is created for each source file compiled with this option, and the name of the .da file is stored as an absolute pathname in the resulting object file. This path name is derived from the object file name by substituting a .da suffix.

The .da consists of one or more blocks with the following structure:

             "magic" number −123 (4-byte number)
     	number of functions (4-byte number)
             length of the "extension block" in bytes
     	extension block (variable length)
       	name of function #0 (the same format as in .bbg file)
             checksum of function #0
     	number of instrumented arcs (4-byte number)
             count of arc #0 (8-byte number)
             count of arc #1 (8-byte number)
             ...
     	count of arc #M_0 (8-byte number)
       	name of function #1 (the same format as in .bbg file)
             checksum of function #1
     	...

Multiple program runs might merge data into a single block, or might append a new block. The current structure of the extension block is as follows:

             number of instrumented arcs in whole program (4-byte number)
             sum all of instrumented arcs in whole program (8-byte number)
             maximal value of counter in whole program (8-byte number)
             number of instrumented arcs in the object file (4-byte number)
             sum all of instrumented arcs in the object file (8-byte number)
             maximal value of counter in the object file (8-byte number)

All three of these files use the functions in gcov-io.h to store integers; the functions in this header provide a machine-independent mechanism for storing and retrieving data from a stream.


Next: , Previous: Gcov, Up: Top

10 Known Causes of Trouble with GCC

This section describes known problems that affect users of GCC. Most of these are not GCC bugs per se—if they were, we would fix them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that are too much work to add, and some are places where people's opinions differ as to what is best.


Next: , Up: Trouble

10.1 Actual Bugs We Haven't Fixed Yet


Next: , Previous: Actual Bugs, Up: Trouble

10.2 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several reasons.


Next: , Previous: Cross-Compiler Problems, Up: Trouble

10.3 Interoperation

This section lists various difficulties encountered in using GCC together with other compilers or with the assemblers, linkers, libraries and debuggers on certain systems.


Next: , Previous: Interoperation, Up: Trouble

10.4 Problems Compiling Certain Programs

Certain programs have problems compiling.


Next: , Previous: External Bugs, Up: Trouble

10.5 Incompatibilities of GCC

There are several noteworthy incompatibilities between GNU C and K&R (non-ISO) versions of C.


Next: , Previous: Incompatibilities, Up: Trouble

10.6 Fixed Header Files

GCC needs to install corrected versions of some system header files. This is because most target systems have some header files that won't work with GCC unless they are changed. Some have bugs, some are incompatible with ISO C, and some depend on special features of other compilers.

Installing GCC automatically creates and installs the fixed header files, by running a program called fixincludes (or for certain targets an alternative such as fixinc.svr4). Normally, you don't need to pay attention to this. But there are cases where it doesn't do the right thing automatically.


Next: , Previous: Fixed Headers, Up: Trouble

10.7 Standard Libraries

GCC by itself attempts to be a conforming freestanding implementation. See Language Standards Supported by GCC, for details of what this means. Beyond the library facilities required of such an implementation, the rest of the C library is supplied by the vendor of the operating system. If that C library doesn't conform to the C standards, then your programs might get warnings (especially when using -Wall) that you don't expect.

For example, the sprintf function on SunOS 4.1.3 returns char * while the C standard says that sprintf returns an int. The fixincludes program could make the prototype for this function match the Standard, but that would be wrong, since the function will still return char *.

If you need a Standard compliant library, then you need to find one, as GCC does not provide one. The GNU C library (called glibc) provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version of it supports other systems, though some very old versions did. Version 2.2 of the GNU C library includes nearly complete C99 support. You could also ask your operating system vendor if newer libraries are available.


Next: , Previous: Standard Libraries, Up: Trouble

10.8 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don't know any practical way around them.


Next: , Previous: Disappointments, Up: Trouble

10.9 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ISO C++ standard) was only recently completed. As a result, your C++ compiler may occasionally surprise you, even when its behavior is correct. This section discusses some areas that frequently give rise to questions of this sort.


Next: , Up: C++ Misunderstandings

10.9.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member; you must also define it. For example:

     class Foo
     {
       ...
       void method();
       static int bar;
     };

This declaration only establishes that the class Foo has an int named Foo::bar, and a member function named Foo::method. But you still need to define both method and bar elsewhere. According to the ISO standard, you must supply an initializer in one (and only one) source file, such as:

     int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result, when you switch to g++ from one of these compilers, you may discover that a program that appeared to work correctly in fact does not conform to the standard: g++ reports as undefined symbols any static data members that lack definitions.


Next: , Previous: Static Definitions, Up: C++ Misunderstandings

10.9.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The compiler may very well delete the object before you expect it to, leaving a pointer to garbage. The most common place where this problem crops up is in classes like string classes, especially ones that define a conversion function to type char * or const char *—which is one reason why the standard string class requires you to call the c_str member function. However, any class that returns a pointer to some internal structure is potentially subject to this problem.

For example, a program may use a function strfunc that returns string objects, and another function charfunc that operates on pointers to char:

     string strfunc ();
     void charfunc (const char *);
     
     void
     f ()
     {
       const char *p = strfunc().c_str();
       ...
       charfunc (p);
       ...
       charfunc (p);
     }

In this situation, it may seem reasonable to save a pointer to the C string returned by the c_str member function and use that rather than call c_str repeatedly. However, the temporary string created by the call to strfunc is destroyed after p is initialized, at which point p is left pointing to freed memory.

Code like this may run successfully under some other compilers, particularly obsolete cfront-based compilers that delete temporaries along with normal local variables. However, the GNU C++ behavior is standard-conforming, so if your program depends on late destruction of temporaries it is not portable.

The safe way to write such code is to give the temporary a name, which forces it to remain until the end of the scope of the name. For example:

     const string& tmp = strfunc ();
     charfunc (tmp.c_str ());


Previous: Temporaries, Up: C++ Misunderstandings

10.9.3 Implicit Copy-Assignment for Virtual Bases

When a base class is virtual, only one subobject of the base class belongs to each full object. Also, the constructors and destructors are invoked only once, and called from the most-derived class. However, such objects behave unspecified when being assigned. For example:

     struct Base{
       char *name;
       Base(char *n) : name(strdup(n)){}
       Base& operator= (const Base& other){
        free (name);
        name = strdup (other.name);
       }
     };
     
     struct A:virtual Base{
       int val;
       A():Base("A"){}
     };
     
     struct B:virtual Base{
       int bval;
       B():Base("B"){}
     };
     
     struct Derived:public A, public B{
       Derived():Base("Derived"){}
     };
     
     void func(Derived &d1, Derived &d2)
     {
       d1 = d2;
     }

The C++ standard specifies that Base::Base is only called once when constructing or copy-constructing a Derived object. It is unspecified whether Base::operator= is called more than once when the implicit copy-assignment for Derived objects is invoked (as it is inside func in the example).

g++ implements the “intuitive” algorithm for copy-assignment: assign all direct bases, then assign all members. In that algorithm, the virtual base subobject can be encountered more than once. In the example, copying proceeds in the following order: val, name (via strdup), bval, and name again.

If application code relies on copy-assignment, a user-defined copy-assignment operator removes any uncertainties. With such an operator, the application can define whether and how the virtual base subobject is assigned.


Next: , Previous: C++ Misunderstandings, Up: Trouble

10.10 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file in a way that won't work unless you rearrange it.


Next: , Previous: Protoize Caveats, Up: Trouble

10.11 Certain Changes We Don't Want to Make

This section lists changes that people frequently request, but which we do not make because we think GCC is better without them.


Previous: Non-bugs, Up: Trouble

10.12 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind has a different purpose:

Warnings may indicate danger points where you should check to make sure that your program really does what you intend; or the use of obsolete features; or the use of nonstandard features of GNU C or C++. Many warnings are issued only if you ask for them, with one of the -W options (for instance, -Wall requests a variety of useful warnings).

GCC always tries to compile your program if possible; it never gratuitously rejects a program whose meaning is clear merely because (for instance) it fails to conform to a standard. In some cases, however, the C and C++ standards specify that certain extensions are forbidden, and a diagnostic must be issued by a conforming compiler. The -pedantic option tells GCC to issue warnings in such cases; -pedantic-errors says to make them errors instead. This does not mean that all non-ISO constructs get warnings or errors.

See Options to Request or Suppress Warnings, for more detail on these and related command-line options.


Next: , Previous: Trouble, Up: Top

11 Reporting Bugs

Your bug reports play an essential role in making GCC reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See Trouble. If it isn't known, then you should report the problem.


Next: , Up: Bugs

11.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:


Previous: Bug Criteria, Up: Bugs

11.2 How and where to Report Bugs

Bugs should be reported to our bug database. Please refer to http://gcc.gnu.org/bugs.html for up-to-date instructions how to submit bug reports. Copies of this file in HTML (bugs.html) and plain text (BUGS) are also part of GCC releases.


Next: , Previous: Bugs, Up: Top

12 How To Get Help with GCC

If you need help installing, using or changing GCC, there are two ways to find it:

For further information, see http://gcc.gnu.org/faq.html#support.


Next: , Previous: Service, Up: Top

13 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, our current development sources are available by CVS (see http://gcc.gnu.org/cvs.html). Source and binary snapshots are also available for FTP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

     http://gcc.gnu.org/contribute.html
     http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at http://gcc.gnu.org/projects/.


Next: , Previous: Contributing, Up: Top

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help encourage people to contribute funds for its development. The most effective approach known is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee distributors to donate part of their selling price to free software developers—the Free Software Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by how much they give to free software development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as, “We will donate ten dollars to the Frobnitz project for each disk sold.” Don't be satisfied with a vague promise, such as “A portion of the profits are donated,” since it doesn't give a basis for comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative accounting and unrelated business decisions can greatly alter what fraction of the sales price counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone honest, you need to inquire how much they do, and what kind. Some kinds of development make much more long-term difference than others. For example, maintaining a separate version of a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ports such as adding a new CPU to the GNU Compiler Collection contribute more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do” when distributing free software for a fee, we can assure a steady flow of resources into making more free software.

     
     Copyright © 1994 Free Software Foundation, Inc.
     Verbatim copying and redistribution of this section is permitted
     without royalty; alteration is not permitted.
     


Next: , Previous: Funding, Up: Top

The GNU Project and GNU/Linux

The GNU Project was launched in 1984 to develop a complete Unix-like operating system which is free software: the GNU system. (GNU is a recursive acronym for “GNU's Not Unix”; it is pronounced “guh-NEW”.) Variants of the GNU operating system, which use the kernel Linux, are now widely used; though these systems are often referred to as “Linux”, they are more accurately called GNU/Linux systems.

For more information, see:

     http://www.gnu.org/
     http://www.gnu.org/gnu/linux-and-gnu.html


Next: , Previous: GNU Project, Up: Top

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991
     Copyright © 1989, 1991 Free Software Foundation, Inc.
     59 Temple Place - Suite 330, Boston, MA  02111-1307, USA
     
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
  1. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

    Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

  2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

    You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

  3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
    1. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
    2. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
    3. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

    These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

    Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

    In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

  4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
    1. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
    2. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
    3. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

    The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

    If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

  5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
  6. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
  7. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
  8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

    If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

    It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

    This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

  9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.
  10. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

    Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

  11. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.
    NO WARRANTY
  12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
  13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

     one line to give the program's name and a brief idea of what it does.
     Copyright (C) year  name of author
     
     This program is free software; you can redistribute it and/or modify
     it under the terms of the GNU General Public License as published by
     the Free Software Foundation; either version 2 of the License, or
     (at your option) any later version.
     
     This program is distributed in the hope that it will be useful,
     but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     GNU General Public License for more details.
     
     You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software Foundation,
     Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

     Gnomovision version 69, Copyright (C) year name of author
     Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
     type `show w'.
     This is free software, and you are welcome to redistribute it
     under certain conditions; type `show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than show w and show c; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

     Yoyodyne, Inc., hereby disclaims all copyright interest in the program
     `Gnomovision' (which makes passes at compilers) written by James Hacker.
     
     signature of Ty Coon, 1 April 1989
     Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.


Next: , Previous: Copying, Up: Top

GNU Free Documentation License

Version 1.2, November 2002
     Copyright © 2000,2001,2002 Free Software Foundation, Inc.
     59 Temple Place, Suite 330, Boston, MA  02111-1307, USA
     
     Everyone is permitted to copy and distribute verbatim copies
     of this license document, but changing it is not allowed.
  1. PREAMBLE

    The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

    This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

    We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

  2. APPLICABILITY AND DEFINITIONS

    This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

    A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

    A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

    The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

    The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

    A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

    Examples of suitable formats for Transparent copies include plain ascii without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

    The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

    A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

    The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

  3. VERBATIM COPYING

    You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

    You may also lend copies, under the same conditions stated above, and you may publicly display copies.

  4. COPYING IN QUANTITY

    If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

    If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

    If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

    It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

  5. MODIFICATIONS

    You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

    1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
    2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
    3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
    4. Preserve all the copyright notices of the Document.
    5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
    6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
    7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
    8. Include an unaltered copy of this License.
    9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
    10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
    11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
    12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
    13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
    14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
    15. Preserve any Warranty Disclaimers.

    If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

    You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

    You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

    The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

  6. COMBINING DOCUMENTS

    You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

    The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

    In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”

  7. COLLECTIONS OF DOCUMENTS

    You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

    You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

  8. AGGREGATION WITH INDEPENDENT WORKS

    A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

    If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

  9. TRANSLATION

    Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warrany Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

    If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

  10. TERMINATION

    You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

  11. FUTURE REVISIONS OF THIS LICENSE

    The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

    Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

       Copyright (C)  year  your name.
       Permission is granted to copy, distribute and/or modify this document
       under the terms of the GNU Free Documentation License, Version 1.2
       or any later version published by the Free Software Foundation;
       with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
       A copy of the license is included in the section entitled ``GNU
       Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this:

         with the Invariant Sections being list their titles, with
         the Front-Cover Texts being list, and with the Back-Cover Texts
         being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.


Next: , Previous: GNU Free Documentation License, Up: Top

Contributors to GCC

The GCC project would like to thank its many contributors. Without them the project would not have been nearly as successful as it has been. Any omissions in this list are accidental. Feel free to contact law@redhat.com or gerald@pfeifer.com if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order.

In addition to the above, all of which also contributed time and energy in testing GCC, we would like to thank the following for their contributions to testing:

And finally we'd like to thank everyone who uses the compiler, submits bug reports and generally reminds us why we're doing this work in the first place.


Next: , Previous: Contributors, Up: Top

Option Index

GCC's command line options are indexed here without any initial - or --. Where an option has both positive and negative forms (such as -foption and -fno-option), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms.


Previous: Option Index, Up: Top

Keyword Index


Footnotes

[1] On some systems, gcc -shared needs to build supplementary stub code for constructors to work. On multi-libbed systems, gcc -shared must select the correct support libraries to link against. Failing to supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous.

[2] Future versions of GCC may zero-extend, or use a target-defined ptr_extend pattern. Do not rely on sign extension.

[3] The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables.

[4] A file's basename was the name stripped of all leading path information and of trailing suffixes, such as .h or .C or .cc.